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General goal of the Calderón problem

I The inverse Calderón problem consists of recovering the electric
properties of a medium, namely the conductivity, by boundary
measurements of many configurations of voltages and currents on its
surface.

I The Calderón problem is the mathematical model for a medical
imaging technique called electrical impedance tomography (EIT).

I EIT refers to a non-invasive medical imaging technique in which an
image of the conductivity of part of the body is inferred from surface
electrode measurements.

I EIT allows to monitor representative changes in the conductivities of
tissues. It presents low resolution.



Some applications of EIT
I EIT is specially promising when monitoring lung functions since lung

conductivity fluctuates intensely during the breath cycle.
I EIT has applications in breast cancer detection as a complementary

technique to mammography and MRI since malignant breast tissues
present higher conductivities (0.2 S) than healthy tissues (0.03 S).

I The success of mammography or MRI rests on their high resolution,
however, they also present a low specificity, which is result of a
relatively high rate of false positive.



The mathematical model

I Let Ω ⊂ Rn, with n ≥ 3, be a bounded domain with boundary ∂Ω.
The case n = 2 is quite well understood (contributions due to
Brown-Uhlmann, Nachmann, Astala-Päivärinta(-Lassas)).

I We suppose that the conductivity γ satisfies c ≤ γ ≤ c−1.

I Given an electric potential on the boundary f , there is a unique
solution u to the Dirichlet problem

∇ · (γ∇u) = 0

u
∣∣
∂Ω

= f .

I u is the electric potential in the interior of Ω.

I Given that we can measure the induced current perpendicular to the
boundary, we know the Dirichlet-to-Neumann map Λγ formally
defined by

Λγ f = γ∇u · n
∣∣
∂Ω
,

where n denotes the exterior unit normal to the boundary.



The Calderón problem

I The inverse Calderón problem consists of reconstructing γ from Λγ .

I Uniqueness: Does Λγ1 = Λγ2 imply γ1 = γ2?

I Stability: Does there exist ω such that

‖γ1 − γ2‖ ≤ ω(‖Λγ1 − Λγ2‖∗)?

I Note that
Λ : γ 7−→ Λγ

is a non-linear problem map.
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Non-uniqueness for anisotropic conductivities

I Recall that uniqueness holds if

Λγ1 = Λγ2 ⇒ γ1 = γ2.

The Calderón problem in anisotropic media has a simple obstruction to
uniqueness (apparently due to Tartar):

I Given any anisotropic conductivity γ in Ω and any diffeomorphism
F : Ω −→ Ω satisfying F |∂Ω = Id, one has

Λγ = ΛF∗γ .

Here F∗γ is the pushforward conductivity

F∗γ(x) =
DF γ DF t

detDF

∣∣∣∣
F−1(x)

.



Uniqueness for Lipschitz conductivities

I Sylvester-Uhlmann proved uniqueness for isotropic smooth
conductivities in 1988.

I In general, conductive media may present rough electrical properties,
so it is relevant to know the minimal regularity assumptions on the
conductivity to ensure uniqueness.

I Brown showed in 1996 that C 1,1/2+ε was enough to ensure the
uniqueness.

I Uhlmann conjectured (ICM 1998) that this should be true if the
conductivities are assumed to be Lipschitz.

I That is to say, if the conductivities are assumed to satisfy

|γ(x)− γ(y)| ≤ c |x − y |, x , y ∈ Ω.

I This was proven by Haberman with n = 3 or 4 in 2014, and by
Haberman-Tataru in 2011 with n ≥ 3 for conductivities sufficiently
close to one (with ‖∇ log γ‖∞ sufficiently small).

I Our contribution has been to remove the smallness condition for all
dimension n ≥ 3.



Uniqueness theorem

Theorem (C-Rogers, 2014)
Let n ≥ 3 and consider Ω ⊂ Rn a bounded domain with Lipschitz
boundary. Let γ1, γ2 ∈ Lip(Ω) with γ1, γ2 ≥ c0 > 0. Then

Λγ1 = Λγ2 ⇒ γ1 = γ2.

Our method basis on works of Sylvester-Uhlmann, Brown and
Haberman-Tataru. It is different to Haberman’s and it seems to be more
suitable to obtain a reconstruction algorithm.
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Logarithmic stability under a-priori assumptions

I Alessandrini proved in 1988, under certain a-priori assumptions,
logarithmic stability for this problem in n ≥ 3: If M−1 ≤ γj and
‖γj‖Hs ≤ M for s > n/2 + 2, then

‖γ1 − γ2‖L∞ .M ω(‖Λγ1 − Λγ2‖∗)

with
ω(t) ≤ | log t|−δ, 0 < t < 1/e

for 0 < δ < 1.

I Alessandrini also showed that these a-priori assumptions are
necessary to prove the previous stability estimate.

I Mandache proved in 2001 that the optimal stability under these
a-priori assumptions is logarithmic.

I The low resolution of EIT is connected with the (optimal)
logarithmic stability of the inverse problem.



Resolution limit for EIT (Learnt from Alessandrini)

I Assume the conductivity γ to be piecewise constant:

γ(x) =
N∑
j=1

γj1Dj (x)

where D1, . . . ,DN are known subdomains of Ω and γ1, . . . , γN are
unknown constants.

I Alessandrini and Vessella proved in 2005 that

‖γ − γ̃‖L∞ ≤ CNω(‖Λγ − Λγ̃‖∗)

with
ω(t) ≤ |t|, 0 < t < 1.

I Later Rondi showed in 2006 that

CN ≥ AeBN1/(2n−1)

where A and B are absolute constants.



Resolution limit for EIT (Learnt from Alessandrini)

I Assume ε to be the error on the measured DN map and say we can
tolerate an error up to C0ε on the reconstructed conductivity. The
error amplification tolerance C0 provides an upper bound on the
number of subdomains D1, . . . ,DN :

N ≤
(

1

B
log

C0

A

)2n−1

.

I Assuming that |Dj | ∼ rn for some r , we have that r ∼ N−1/n. The
number r can be interpreted as a resolution parameter and
resolution limit is

r ≥
(

1

B
log

C0

A

)−(2n−1)/n

.

I For fix C0, no detail smaller than the resolution limit can be
detected.



Stability theorem

Theorem (C-Garćıa-Reyes, 2012)
Let Ω be a bounded Lipschitz domain of Rn with n ≥ 3. Let M, δ and ε
be real constants such that M > 1, 0 < δ < 1 and 0 < ε < 1. Then,

‖γ1 − γ2‖C 0,δ(Ω) .
(
log ‖Λγ1 − Λγ2‖−1

)−ε2(1−δ)/(3n2)

for all γ1, γ2 ∈ C 1,ε(Ω) such that γj > 1/M and ‖γj‖C 1,ε(Ω) ≤ M.
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Internal information from boundary data

I The Calderón problem is difficult because we are trying to detect
internal information from boundary measurements.

I If uj solves ∇(γj∇uj) = 0 in Ω, then

Λγ1 = Λγ2 ⇒
∫

Ω

(γ1 − γ2)∇u1 · ∇u2 dx = 0.

I Proving uniqueness from this requires to show density for certain
class of solutions.

I If γj ∈ L∞(Ω), the class of solution has to satisfy

∇u1 · ∇u2 ∈ L1(Ω),

which is somehow small class.

I Note that the smaller is the class the harder is to prove density.



More regular conductivities

I If γ ∈W 2,∞(Ω)

∇ · (γ∇u) = 0 ⇔ −∆v + γ−1/2∆γ1/2v = 0

with v = γ1/2u.

I If vj solves ∆vj + γ
−1/2
j ∆γ

1/2
j vj = 0 in Ω, then

Λγ1 = Λγ2 ⇒
∫

Ω

(γ
−1/2
1 ∆γ

1/2
1 − γ−1/2

2 ∆γ
1/2
2 )v1v2 dx = 0.

I Proving uniqueness under this regularity requires to show density for
class of solutions satisfying that

v1v2 ∈ L1(Ω).

I Note how assuming more regularity for γj allows to pass derivatives
from the solutions to the conductivities.



Lipschtiz conductivities

Recall that γ ∈ Lip(Ω) means γ to be bounded and satisfy

|γ(x)− γ(y)| ≤ c |x − y |, x , y ∈ Ω.

I Its difference quotients (≈ its first derivatives) are bounded.

I Therefore,

γ,∇γ ∈ L∞(Ω) ⇔ γ ∈W 1,∞(Ω).

I If γ ∈W 1,∞(Ω)

∇ · (γ∇u) = 0 ⇔ −∆v + qv = 0

with v = γ1/2u and q = γ−1/2∆γ1/2 in the sense of distributions:

〈qφ, ψ〉 =
1

4

∫
|∇ log γ|2φψ dx − 1

2

∫
∇ log γ · ∇(φψ) dx .



Lipschitz conductivities

I If vj solves (−∆ + qj)vj = 0 in Ω and Λγ1 = Λγ2 then

1

4

∫
(|∇ log γ1|2−|∇ log γ2|2)v1v2 dx−1

2

∫
∇ log

γ1

γ2
·∇(v1v2) dx = 0.

I Proving uniqueness under this regularity requires to show density for
class of solutions satisfying that

v1v2,∇(v1v2) ∈ L1(Ω).



Outline

The Calderón problem as model for electrical impedance tomography

Uniqueness for Lipschitz conductivities

Stability and resolution

Where are the difficulties of this problem?

To keep in mind



What deserves to be kept in mind?

I The Calderón problem is a non-easy mathematical problem which
models a medical imaging technique with promising applications as
early detection of breast cancer.

I The difficulty of the Calderón problem comes up because we are
trying to detect internal information from boundary measurements.

I The Calderón problem becomes much more delicate when the
conductivity is not so smooth because the coefficient to be detect
sits on higher order terms in the conductivity equation.
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