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General goal of the Calderón problem

I The inverse Calderón problem consists of recovering the electric
properties of a medium, namely the conductivity, by boundary
measurements of many configurations of voltages and currents on its
surface.



The mathematical model

I Let Ω ⊂ Rn, with n ≥ 3, be a bounded domain with boundary ∂Ω.
The case n = 2 is quite well understood (contributions due to
Brown–Uhlmann, Nachmann, Astala–Päivärinta(–Lassas)).

I We suppose that the conductivity γ satisfies c ≤ γ ≤ c−1.

I Given an electric potential on the boundary f , there is a unique
solution u to the Dirichlet problem

∇ · (γ∇u) = 0

u
∣∣
∂Ω

= f .

I u is the electric potential in the interior of Ω.

I Given that we can measure the induced current perpendicular to the
boundary, we know the Dirichlet-to-Neumann map Λγ formally
defined by

Λγ f = γ∇u · n
∣∣
∂Ω
,

where n denotes the exterior unit normal to the boundary.



The Calderón problem

I The inverse Calderón problem consists of reconstructing γ from Λγ .

I We must first check Uniqueness:

Λγ1 = Λγ2 ⇒ γ1 = γ2.

I Sylvester–Uhlmann proved uniqueness for smooth conductivities in
1988.

I In general, conductive media may present rough electrical properties,
so it is relevant to know the minimal regularity assumptions on the
conductivity to ensure uniqueness.

I Brown showed in 1996 that C 1,1/2+ε was enough to ensure the
uniqueness.
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Uniqueness for Lipschitz conductivities

I Uhlmann conjectured (ICM 1998) that this should be true if the
conductivities are assumed to be Lipschitz.

I That is to say, if the conductivities are assumed to satisfy

|γ(x)− γ(y)| ≤ c |x − y |, x , y ∈ Ω.

I This was proven by Haberman with n = 3 or 4 in 2014, and by
Haberman–Tataru in 2011 with n ≥ 3 for conductivities sufficiently
close to one (with ‖∇ log γ‖∞ sufficiently small).

I Our contribution (also in 2014 but a couple of moths after
Haberman’s) has been to remove the smallness condition for all
dimension n ≥ 3.



Uniqueness theorem

Theorem (C–Rogers. Forum of Mathematics, Pi)
Let n ≥ 3 and consider Ω ⊂ Rn a bounded domain with Lipschitz
boundary. Let γ1, γ2 ∈ Lip(Ω) with γ1, γ2 ≥ c0 > 0. Then

Λγ1 = Λγ2 ⇒ γ1 = γ2.

Our method basis on works of Sylvester–Uhlmann, Brown and
Haberman–Tataru. It is different to Haberman’s and it seems to be more
suitable to obtain a reconstruction algorithm.
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The conductivity equation and the Schrödinger equation
I The conductivity equation is a second partial differential equation in

divergence form:
∇ · (γ∇u) = 0.

I The unknown conductivity sits on the highest (or leading) order of
derivatives of the solution u. From the equation in this form is very
hard to obtain uniqueness.

I More regular conductivities may sit on lower order of derivatives of u:

∇ · (γ∇u) = 0 ⇔ ∆u + γ−1∇γ · ∇u = 0.

I And even in the zeroth order: write u = γ−1/2v

∇ · (γ∇u) = ∇ · (γ1/2∇v + γ1/2γ1/2∇γ−1/2v)

= ∇ · (γ1/2∇v −∇γ1/2v) [γ1/2∇γ−1/2 = −γ−1/2∇γ1/2]

= γ1/2∆v −∆γ1/2v .

I The Schrödinger equation:

∇ · (γ∇u) = 0 ⇔ ∆v + qv = 0

with v = γ1/2u and q = γ−1/2∆γ1/2.



From the boundary to the interior

Proposition (An Alessandrini-type identity)

Λγ1 = Λγ2 ⇒
∫

Ω

(q1 − q2)v1v2 dx = 0,

for every v1 and v2 solving −∆v1 + q1v1 = 0 and −∆v2 + q2v2 = 0 in Ω.

I To prove density for class of solutions satisfying that v1v2 ∈ L1(Ω).

I By generating enough oscillatory solutions, this will yield∫
(q1 − q2)e−ik·x dx = 0, ∀ k ∈ Rn ⇒ q1 = q2.

I This implies that

−∇ ·
(
γ

1/2
1 γ

1/2
2 ∇(log γ

1/2
1 − log γ

1/2
2 )

)
= 0,

(log γ
1/2
1 − log γ

1/2
2 )|∂Ω = 0.

I Thus, log γ
1/2
1 = log γ

1/2
2 ⇒ γ1 = γ2. [Sylvester–Uhlmann]



Why the reduction to Schrödinger equation?

I Without the reduction to Schrödinger equation (that means γ sits on
the highest order of derivative of u) the integral identity would be:

Λγ1 = Λγ2 ⇒
∫

Ω

(γ1 − γ2)∇u1 · ∇u2 dx = 0.

I Proving uniqueness for γj ∈ L∞(Ω) requires to show density for
solutions satisfying

∇u1 · ∇u2 ∈ L1(Ω).

I Note that the smaller is the class the harder is to prove density.

I When assuming more regularity for γj , we are allowed to pass
derivatives from the solutions to the conductivities.



Complex geometrical optics solutions
The idea to prove uniqueness was to plug oscillatory solutions into the
Alessandrini identity and prove density of the product:

0 =

∫
Ω

(q1 − q2)v1v2 dx −→
∫

(q1 − q2)e−ik·x dx = 0 ∀k ∈ Rn.

The solutions are called complex geometrical optics (CGO) and look as

v1 = eζ1·x(1 + w1) v2 = eζ2·x(1 + w2),

where

ζ1 = τη + i
(
− 1

2
k +

(
τ 2 − |k |

2

4

)1/2

θ
)

ζ2 = − τη + i
(
− 1

2
k −

(
τ 2 − |k |

2

4

)1/2

θ
)
,

with τ ≥ 1, |η| = |θ| = 1, η · θ = η · k = θ · k = 0 and w1 and w2 decay
in some sense as τ →∞.

I Note that ζ1 · ζ1 = ζ2 · ζ2 = 0 so that eζ1·x and eζ2·x are harmonic.
I We also have ζ1 + ζ2 = −ik, so that

v1v2 = e−ik·x(1 + w1)(1 + w2) = e−ik·x + e−ik·xw1(1 + w2).



Existence of CGO solutions
I Note that for v = eζ·x(1 + w)

(−∆ + q)v = 0 ⇔ e−ζ·x(−∆ + q)eζ·x(1 + w) = 0.

I Using that ζ · ζ = 0, we see that

e−ζ·x(−∆ + q)eζ·x = (−∆− 2ζ · ∇+ q).

I It will suffice to find w (the remainder term) such that

(−∆− 2ζ · ∇+ q)w = −q.

I The symbol of the operator −∆− 2ζ · ∇ is given by

pζ(ξ) = |ξ|2 − 2iζ · ξ.

I Whenever |ξ| ≥ 4|ζ| ∼ τ

|pζ(ξ)| ∼ |ξ|2 ∼ (τ 2 + |ξ|2).

I As −∆− 2ζ · ∇+ q is a zeroth order perturbation of −∆− 2ζ · ∇,
one could be optimistic and expect

‖(τ 2 + |ξ|2)ŵ‖L2 . ‖q̂‖L2 ⇔ ‖w‖Hk . τ k−1‖q‖L2 , k = 0, 1, 2.
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Lipschtiz conductivities

Recall that γ ∈ Lip(Ω) means γ to be bounded and satisfy

|γ(x)− γ(y)| ≤ c |x − y |, x , y ∈ Ω.

I Its difference quotients (≈ its first derivatives) are bounded.

I Therefore,
γ,∇γ ∈ L∞ ⇔ γ ∈W 1,∞.

I If γ ∈W 1,∞

∇ · (γ∇u) = 0 ⇔ −∆v + qv = 0

with v = γ1/2u and q = γ−1/2∆γ1/2 in the sense of distributions:

〈qφ, ψ〉 =
1

4

∫
|∇ log γ|2φψ dx − 1

2

∫
∇ log γ · ∇(φψ) dx .

Note that ∇ log γ ∈ L∞.



Lipschitz conductivities

I If vj solves (−∆ + qj)vj = 0 in Ω and Λγ1 = Λγ2 then

1

4

∫
(|∇ log γ1|2−|∇ log γ2|2)v1v2 dx−

1

2

∫
∇ log

γ1

γ2
·∇(v1v2) dx = 0.

I Proving uniqueness under this regularity requires to show density for
class of solutions satisfying that

v1v2,∇(v1v2) ∈ L1(Ω).

I The situation here can be saved because ∇(v1v2) = v2∇v1 + v1∇v2.

I Recall that v = eζ·x(1 + w). Before we only used the decay of w in
the L2 norm. Now we will need to control also the H1 norm.



The CGO solutions and the decay of the remainder term
In order to construct v = eζ·x(1 + w) solving

(−∆ + q)v = 0

It was enough to find a remainder term w satisfying

(−∆− 2ζ · ∇+ q)w = −q.

One can do so but the decay become worse:

‖w‖Ht . τ t sup
|y |≤1

‖∇ log γ(x)−∇ log γ(x − τ−1y)‖L2
x

[0 ≤ t ≤ 1]

. o(τ t−s)‖∇ log γ‖Hs [0 ≤ s ≤ 1]

Warning: This decay estimate is only useful for the uniqueness problem
when s > 1/2. This requires γ ∈ Hs+1, which is 1/2 derivatives more
than Lipschitz. Brown proved uniqueness with γ ∈ C 1,s(Ω).
How to improve the estimates:

I The remainder w depends on ζ = ζ(τ, η) but we do not need an
estimate that holds for every τ and η, as the one above. We only
need for some τ ’s and some η’s.

I A way to detect if there are τ ’s and η’s for which the above estimate
can be improved is averaging in τ and η.



Spaces adapted to −∆− 2ζ · ∇
We are going to prove the existence of w solution to

(−∆− 2ζ · ∇+ q)w = −q

in a family of spaces suitable to average in the parameters τ and η.
I It is a general fact that the surjectivity of T = (−∆− 2ζ · ∇+ q) is

a consequence of the injectivity of T ∗.
I The injectivity follows from the a priori estimate for T ∗:

‖ψ‖
X

1/2
ζ

. ‖(−∆ + 2ζ · ∇+ q)ψ‖
X
−1/2
ζ

∀ ψ ∈ C∞0 (Ω),

where the norms adapted to the problem are given by

‖f ‖2
X s
ζ

=

∫ (∣∣|ξ|2 + 2iζ · ξ
∣∣2 + |ζ|2

)s
|f̂ (ξ)|2 dξ.

When ‖∇ log γ‖L∞ is sufficiently small, the a priori estimate follows easily

‖ψ‖
X

1/2
ζ

. ‖(−∆ + 2ζ · ∇)ψ‖
X
−1/2
ζ

. ‖(−∆ + 2ζ · ∇+ q)ψ‖
X
−1/2
ζ

+ ‖qψ‖
X
−1/2
ζ

. ‖(−∆ + 2ζ · ∇+ q)ψ‖
X
−1/2
ζ

+ ‖∇ log γ‖L∞‖ψ‖X 1/2
ζ

.



Averaging in the parameters τ and η
From the previous a priori estimate one deduces that there exists w
solution to

(−∆− 2ζ · ∇+ q)w = −q

that satisfies
‖w‖

X
1/2
ζ

. ‖q‖
X
−1/2
ζ

with ζ = ζ(τ, η). Averaging now

1

λ

∫
S

∫ 2λ

λ

‖w‖
X

1/2
ζ

dτdη .
1

λ

∫
S

∫ 2λ

λ

‖q‖
X
−1/2
ζ

dτdη

. sup
|y |≤1

‖∇ log γ(x)−∇ log γ(x − λ−1/4y)‖L2
x

= o(1).

I Haberman–Tataru introduced these spaces, proved the averaged
estimate and used it to conclude uniqueness when the conductivity is
Lipschitz and ‖∇ log γ‖∞ is sufficiently small.

I Our contribution was to remove the smallness condition.



How to remove the smallness of ‖∇ log γ‖L∞
In order to remove the smallness condition, we need to understand why

‖qψ‖
X
−1/2
ζ

. ‖∇ log γ‖L∞‖ψ‖X 1/2
ζ

.

Recall that

〈qψ, φ〉 =
1

4

∫
|∇ log γ|2φψ dx − 1

2

∫
∇ log γ · ∇(φψ) dx .

We have∣∣〈qψ, φ〉∣∣ . (1 + ‖∇ log γ‖L∞)2
(
‖ψ‖H1‖φ‖L2 + ‖ψ‖L2‖φ‖H1

)
. (1)

Now ‖f ‖L2 ≤ |ζ|−1/2‖f ‖
X

1/2
ζ

, and

‖∇f ‖L2 ≤
(∫
|ξ|<4|ζ|

|ξ|2|f̂ (ξ)|2 dξ
)1/2

+
(∫
|ξ|≥4|ζ|

|ξ|2|f̂ (ξ)|2 dξ
)1/2

. |ζ|‖f ‖2 +
(∫
|ξ|≥4|ζ|

∣∣|ξ|2 + 2iζ · ξ
∣∣|f̂ (ξ)|2 dξ

)1/2

≤ |ζ|1/2‖f ‖
X

1/2
ζ

+ ‖f ‖
X

1/2
ζ

.

By plugging this into (1):
∣∣〈qψ, φ〉∣∣ . ‖∇ log γ‖L∞‖ψ‖X 1/2

ζ

‖φ‖
X

1/2
ζ

.



Our contribution: an improved a priori estimate
I The bad behaviour in |ζ| comes from the low-frequencies of the ∇.

But this is only an operator from L2 to L2 with bad norm.
I Our idea is then to introduce some Carleman weights (weights

depending on a parameter) that provide an improved control on the
L2-part norm of X s

ζ .
I More precisely, our contribution consists of guessing and proving the

following estimate:

‖ψ‖
Y

1/2
ζ

. ‖eM(η·x)2/2(−∆+2ζ·∇)(e−M(η·x)2/2ψ)‖
Y
−1/2
ζ

∀ψ ∈ C∞0 (Ω)

where the new norms are given by

‖f ‖2
Y s
ζ

=

∫ (
M−1

∣∣|ξ|2 + 2iζ · ξ
∣∣2 + M|ζ|2

)s
|f̂ (ξ)|2 dξ

for a large parameter M.
I The parameter M is now chosen to include the q without the

smallness condition.
I We get rid of the weights because our estimates are local. This

bring us to the situation of Haberman–Tataru without the smallness
condition. Using the averaged estimate and the previous ideas of
Sylvester–Uhlmann, Alessandrini and Brown, the uniqueness follows.
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What deserves to be kept in mind?

I The inverse Calderón problem consists of reconstructing the
conductivity in a medium their corresponding Dirichlet-to-Neumann
map.

I The difficulty of the Calderón problem comes up because we are
trying to detect internal information from boundary measurements.

I The Calderón problem becomes much more delicate when the
conductivity is not so smooth because the coefficient to be detect
sits on higher order terms in the conductivity equation.

I The information on the boundary is transmitted to the interior
through complex geometrical optics solutions, which asymptotically
behave as highly-oscillatory and exponentially-growing harmonic
functions.

I The less regular is the conductivity the harder is to construct these
solutions.
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