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Binormal Flow

seR

_ 3
Ko = Xo N Koo X(s,1) €R s € [0,27] periodic

(BF)

Recall that if
X, =T

then
Ty =T NTye = JD/T,

Hence T; - T = 0 and if |T|? = R at time zero then this prop-
erty holds for all times. Notice that formally we recover the free
Schrodinger equation at the limit R = oo.



In the rest of the talk we will assume that B = 1. Then

T, = cn
ne = —cl + 7b
by = — TN,
and (BF') becomes
seR

X;=cb  X(s,t)€eR’ (1)

s € [0,27] periodic.

The equation was first obtained by Da Rios in 1906 as an approx-
imation to the evolution of vortex filaments according to Euler
equations. Jerrard-Smets’15, Jerrard-Seis’16.



The motivation of the talk is some numerical experiments done
for initial data given by a regular polygon. We can think in non—
circular jets as the corresponding problem in real fluids. In this
case the dynamics seem to be much more complicated than the
one of vortex rings. At the qualitative level two relevant facts are
observed in real experiments:

e Axis switching phenomena.

e Symmetries that are a multiple of the starting symmetry ap-
pear. (Grinstein et al., ’96).

It is interesting that in all these references (BF) is used as a
justification of the seen dynamics.

In a recent work with de la Hoz we showed that these phenom-
ena appear in the (BF) and that in fact was nothing but a
non—linear Talbot effect (Olver ’10, Erdogan-Tsirakis ’13, De la
Hoz-Vega ’13)




THE TALBOT EFFECT
ZeithHks'

I — -
P(s,0) = Vi > 6(s—FF)
k=—o0
P - K
w(satpq) = m S: S: G(—p,m,q)o(s — % - 2]\72—7;
k=—0co0 m=0
“Non-linear version”:
T, = «ep + Bes
e1s = —al
€as — —6T



The generalized quadratic Gauf3 sums are defined by

e[ -1

Z 2mi(al®+bl)/c
€ Y
1=0

for given integers a, b, ¢, with ¢ # 0.

( \/Qewm, if ¢ is odd,

G(—p,m,q) =& +/2qe’?™, if q is even and ¢/2=m mod 2,

0, if ¢ is even and ¢/2 #m mod 2,

\

for a certain angle 6,,, that depends on m (and, of course, on p and
q, t00).
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experiments (QU1) simulations (SQ1)

o

/
T =1I3 T =13

FIG. 10. Axis switching of the jet cross section in terms of isocontours of
time-averaged streamwise velocity scaled with its local centerline value
(u/uy) for experimental (OU1) and simulated (SQ1) jets. Contour levels are
0.2, 0.4, 0.6, and 0.8. The geometry of the experimental nozzle is superim-
posed on each slice on the left; the initial half-width velocity cross section of
the simulated jets is superimposed on each slice on the right. The stream-



I, III, V : hairpin (braid) vortices
II, IV : deformed vortex rings

square vortex
sheet




Motivation

New numerical simulations suggest that the dynamics at time 0T
of any of the corners of the regular polygon is the one of the self—
similar solution that is determined by the angle and location of the
corner.

Hence we want to revisit what is known about the self—similar
solutions focusing in three main aspects:

(i) Continuation after the singularity has been formed (Joint
work with V. Banica).

(ii) Behavior of some conservation laws that are also present in
Euler equations (linear momentum).

(iii) Transfer of energy: Lack of continuity of some appropriate
NOrm.
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Function Spaces

Let us start from (iii). We are dealing with singular curves as
polygons. Therefore the Frenet system does not seem to be the
appropriate one. It is better to use the parallel frame:

Ts — aeq -+ 562
e1s = —al
€asg — —BT

Then (Hasimoto transformation) ¢ = « + ¢ solves
1 (NLS)
¢t =1 (wss =+ 5 ("‘MQ — A(t))w) A(t) c R.
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Function Spaces

We want to deal with corners. That amounts to consider
Y(s,0) = cod

which is critical for scaling but supercritical with respect the first
positive conservation law

1060 = [ 106,00

Results “below” L? were first obtained by Vargas-V’01, and then
extended by Griinroch’05; Christ’07. More recently there has been
plenty of activity Koch-Tataru’l6, Kappeler-Molnar’16, Killip-
Visan-Zhang’16. All the results are subcritical from the scaling
point of view (in the Sobolev class is H~1/2).
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Function Spaces

The “natural” spaces are given as weighted Lebesgue spaces (and
variants) of 1g. From this point of view a natural space would be

® {D\O c L™,

Similarly for T" we will consider (T . = Re (@(61 + z'eg))>.

AN

o T, L.
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Selfsimilar Solutions

In order to find the self similar solutions of (BF') is better not to
use (NLS) but the (BF') itself. Hence we look for solutions that
can be written as vt G(s/Vt)

From (BF) we get

1 _f I ",
2G 2G—G AN G

Calling T = G,

—%T’ —T AT,

Hence c=¢y 7 =s/2 and

V(o) = S = (s VD) o = o
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Selfsimilar Solutions

In a joint work with Gutiérrez and Rivas we characterized all the
possible GG. First observe that

(G)’ G -G b
— ) = = —2c0—
S

S 52

G
Hence lim — = AT and
s—+too 8§

lim VtG(s/V't) =

t—0

ATs s> 0
A7 s s<0
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Selfsimilar Solutions

Moreover,

Using similar ideas we can prove that there exist B, B~ such that

T = AT 129 1 0(1/s?)
S

.2, .c
(n4+1ib) = coBTe! Tt 7185 1 0O(1/s) S — 00
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Continuation for t < 0

Recall that (BF') is a flow of oriented curves. In fact to change the
orientation is equivalent to change the direction of time, because
of the symmetry:

“X(—s,—t) is a solution of (BF) if X(s,t) is a solution”

It is also rotation invariant. Hence we can construct the following
“artificial” solution:

(VIG(s/V1) t>0
VIt G(=s/V/Tt) t<0

X(s,t) = <

17



18



Continuation for t < 0

Theorem.- (with V. Banica) X is a stable (in an appropri-
ate sense) solution. As a consequence the process of creat-
ing /anhilating a corner is stable.

Remarks.—

(1) This is not true at the level of (NLS)
1
t=1 ot — v (s/VE) + s,

for0 <t <1 and ﬂlimwm €(-,1)

_|_
(2) T(s,t) 2% Ty(s); AT B*
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About (ii
Linear momentum density

velocity

— — ﬁ
r N\ w R ..
w vorticity

In the (BF') setting the invariant is given by the density
X NT ds

In our case

t>0 fﬂG(s/ﬁ) /\T(s/\/f)ds:th/\T:
=2t [cob NT =2t [Ty =2t(AT — A7)

and something similar for ¢ < 0.

Hence Linear Momentum is not preserved!!:

/5{’ AT =2|t|(AT — A7)
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About (iii

Theorem.— (with V. Banica)

)
, [<a(i-em)4e t=0
17|
LOO
> 4mcs — € t>0
\
~ 2 ~ 2
Hence ‘ TS(t)HL > | TS(O)HL if ¢o > 0 and e small enough.
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Two Numerical Experiments

e The first one is that the linear momentum seems to be pre-
served in the case of a regular polygon. However locally it
seems to have an “intermittent” behavior.

N 2
e The second one is about the size of HT (-, 1) H for a regular

LOO
polygon R R R
13 Ty +iT5
(they have some symmetry: when one is zero the other one
is not).
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A

max(|k(T1 (k) + i1 (k))|)

4.5

3.5

M =3; ¢q=120000; 1920000 freq.

0.05 0.1 0.15

p/q, where ged(p, q) = 1
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max(| kT3 (k)|
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M =3; ¢=120000; 1920000 freq.
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(a = co)

Since

T,(0,2) = (A~ — A)do + R (f1(5)e ™ "IN (0,2))
we have

T,0.6) — (A~ — A")| <O / £ G)lde < Ol

Recalling that

A —AT2 =4(1 - AD) =4(1 — e ™),
we get
T2(0,6)2 = 4(1 — 7™ )| < C| f |l

2

As 4ma? > 4(1 — e ™), if || f4|| g1 is small enough we obtain the
second inequality in the statement.
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To get the lower bound 4mwa® for \]ﬁ(t)HLoo we look at large fre-
quencies. We have

Ty (t,€) = RON(L,€).

Recall that if we denote

N(t,z) = N(t,z)e!®®®)  &(t,z) = a®log %,

3 lim N(t,z) = N>, RN®,IN> ¢ §?.

T—r 00

then

We can then write

T = [eeen <ﬁ< by (7.5 ) e (v - g(t,x») de, (%)

with the function ¢g(¢,x) defined by ¢g(t,x) := N> — N(t,x) satis-
fying

~

g(t) € L™=, g(t,z) =30  (+*)
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The leading term in (x) is the same one as for the self-similar
solutions, with N°° instead of B, so computations on it go the
same. We get

lim
€| =00

/61'305 P (61415 ae—ia2 log j?NOO> dr — 2\/%&% (€i§2t—ia2 log 2|£|\/E—i%Noo>
Then we notice the following orthogonality relation. By construc-
tion RN (t,x) L SN(t, x), that writes

RN (t,z)e ) | ImN(t, z)e )

and implies

~

RN(t,z) L ImN(t,z).

From this together with (xx) it follows that

RN 1 SN (% % %)

30

= 0.



Using the orthogonality relation (x * %) we have

‘3% (eiEQt—iaQ log 2|§|\/z—i% NOO> | _ 1,

and therefore

2 2

. e_iz_t .
lim /e_”f?R ae 1) oo | gy
€00 | ( Vi

The three term left to estimate in (x) are

— 4ma?| = 0.

2
et 1 1
/e_chg %e_w(t’m) m(t, x)dx, m(t,x) € {u <— £> ,9(t,z),u (Z? %) g(t, )}

These integrals tend to zero as |£| goes to infinity. So we have
obtained

I (1)1 > 4ma®.
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periodicity

4

dispersion

Talbot Effect
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