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Summary

(A) Binormal Flow (BF) a dispersive (geometric) PDE

• Critical regularity: Polygonal lines

• Selfsimilar solutions have finite energy
�cL2

per

�

• Talbot e↵ect

• Continuation beyond the singularity time

• Coherent structures are the self similar solutions

• Interaction: A weakly non–linear Talbot e↵ect (NLTe)

Q: BF for regular Polygons and regular polygonal helices

(B) BF as a toy model in Fluid Mechanics: Vortex filament
equation (VFE)

Conjecture: NLTe can explain the turbulent dynamics of non
circular jets



(A) Binormal Flow

(BF)

(SM)

•  Hashimoto wave function 1d NLS (cubic focusing)(NLS)
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Hasimoto transformation:

�(s, t) = c(s, t)ei
R s
0 �(s0,t)ds0
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In our case

�(s, t) =
a⇥
t
ei

s2

4t ,

Z 1

�1
|�|2ds = +�.

SCHRÖDINGER EQUATION

c = c(s, t) curvature

� = �(s, t) torsion
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ABSTRACT
Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVC).
The flow patterns associated with noncircular jets involve mechanisms of vor-

tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.

1The US government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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Riemann’s non-di↵erentiable function
Integrating the Fourier series in time and evaluating at x = 0 we get

�(t) = i

Z t

0
u(0, ⌧) d⌧ =

X

k2Z

e
�4⇡2ik2t � 1

�4⇡2k2
,

which is essentially Riemann’s non-di↵erentiable function.

Figure: De la Hoz, Vega: Vortex filament equation for a regular polygon,
Nonlinearity 27 (2014), 3031-3057
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• Oskolkov ’92,

• Ja�ard, multifractal ’96,

17

• Berry and Goldberg, Talbot E�ect ’88,

• Duistermaat ’91,

• Kapitanski, Rodnianski ’99,

• Erdogan–Tzirakis ’13,

• De la Hoz–Vega ’13, ’17 critical regularity,

• Banica–Vega ’18 critical regularity.

• Jerrard–Smets ’15,

• Chen-Olver ’12 ’14; Olver-Sheils ’17 Olver-Tsatis ’18

• Olver ’10
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Energy transfer

Theorem.– For t > 0 we have the following conservation law:

kT (t)k2L2
sc

= 4⇡
X

j

|↵j |2,

but
kT (0)k2L2

sc
= 4

X

j

(1� e�⇡|↵j |2),

where

kT (t)k2L2
sc

:= lim
k!1

Z k+1

k
|cTx(t, ⇠)|2d⇠.

(⇤)
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Energy Transfer, NLTe 
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