SELF-ADAPTIVE *hp* FINITE-ELEMENT SIMULATION OF DC/AC DUAL-LATEROLOG MEASUREMENTS IN DIPPING, INVADED, AND ANISOTROPIC FORMATIONS

M. J. Nam, D. Pardo, and C. Torres-Verdín, The University of Texas at Austin

hp-FEM team: D. Pardo, M. J. Nam, L. Demkowicz, C. Torres-Verdín,

V. M. Calo, M. Paszynski, and P. J. Matuszyk

8th Annual Formation Evaluation Research Consortium Meeting August 14-15, 2008

Overview

EXAS

- 1.Main Lines of Research and Applications (D. Pardo)
 - Previous work
 - Main features of our technology
- 2. Application 1: Tri-Axial Induction Instruments (M. J. Nam)
- 3. Application 2: Dual-Laterolog Instruments (M. J. Nam)
- 4. Multi-Physics Inversion: (D. Pardo)
- 5. Sonic Instruments: (L. Demkowicz)

Outline

- Introduction to Dual Laterolog
- Previous Work
- Method
- •Numerical Results:
 - Groningen Effects on AC DDL
 - Dipping, Invaded, Anisotropic Formations
 - Eccentricity
- Conclusions

Dual Laterolog

One problem with several RHSs

What we modeled in simulating the DLL tool

Deviated Wells (0, 10, 45, and 60 degrees) at DC

Anisotropic Formation (60- and 0-degree Deviated Wells) at DC

Effects of anisotropy increase with increase of dip angle

Method for Simulating AC DLL Measurements

Combination of:

EXAS

- 1. A Self-Adaptive Goal-Oriented *hp*-FEM for AC problems
- 2. Embedded Post-Processing Method (EPPM)
- **3. Parallel Implementation**

Main challenges when simulating AC DLL measurements 1:

Introducing in the AC formulation a source equivalent to $\nabla \cdot J$

To avoid simulating the inner wiring system!!

Main challenges when simulating AC DLL measurements 1:

TEXAS

Introducing in the AC formulation a source equivalent to $\nabla \cdot J$

12

Main challenges when simulating AC DLL measurements 1:

Introducing in the AC formulation a source equivalent to $\nabla{\cdot}J$

Governing equationVariational formulationDC
$$\nabla \cdot (\sigma \nabla \cdot u) = \nabla \cdot \mathbf{J}^{imp}$$
 $\langle \nabla v, \sigma \nabla u \rangle_{L^2(\Omega)} = \langle v, \nabla \cdot \mathbf{J}^{imp} \rangle_{L^2(\Omega)} + \langle v, g \rangle_{L^2(\Gamma_N)} \quad \forall v \in H^1_D(\Omega)$ AC $\begin{bmatrix} \nabla \times \mathbf{H} = (\sigma + j\omega\varepsilon)\mathbf{E} + \mathbf{J} \\ \nabla \times \mathbf{E} = -j\omega\mathbf{H} \end{bmatrix}$ Final AC variational formulations we use: $\langle \nabla \times \mathbf{F}, \mu^{-1} \nabla \times \mathbf{E} \rangle_{L^2(\Omega)} - \langle \mathbf{F}, (\omega^2 \varepsilon - j\omega\sigma)\mathbf{E} \rangle_{L^2(\Omega)} - \langle \mathbf{F}, (\omega^2 \varepsilon - j\omega\sigma)\nabla p \rangle$
 $= 0 \quad \forall \mathbf{F} \in H_{\Gamma_E}(\operatorname{curl}; \Omega)$
 $- \langle \nabla q, (\omega^2 \varepsilon - j\omega\sigma)\mathbf{E} \rangle_{L^2(\Omega)} = j\omega \langle q, \nabla \cdot \mathbf{J}^{imp} \rangle_{L^2(\Omega)} \quad \forall q \in H^1_D$

Main challenges when simulating AC DLL measurements 2:

Simulation of current return at earth surface

1. No current return results in no Groningen effects.

(Numerical results will be shown)

- 2. We have to simulate the earth surface.
 - \rightarrow Our computing domain is larger than

2 km in the vertical direction.

Groningen Effects on LLd at DC and AC

Groningen Effects on LLd at 100 Hz (I)

Groningen Effects on LLd at 100 Hz (II)

Groningen Effects on LLd at 100 Hz (III)

Groningen Effects on LLd at 100 Hz (IV)

Groningen Effects on LLd at 100 Hz (V)

A Middle East Formation Model

Invaded Anisotropic Formation (DC DLL)

Conclusions

- We successfully simulated AC DLL measurements by explicitly incorporating the term ∇-J for non-zero frequency Maxwell's equations.
- The simulation employed a high-order self-adaptive hp finiteelement method with an embedded post-processing technique.
- Numerical experiments indicate that the inclusion of a current return electrode is critical to simulate Groningen effects.
- Groningen effects decrease as the current return is placed farther away from either the logging points or the borehole.

Acknowledgements

Sponsors of UT Austin's consortium on Formation Evaluation:

