

SIMULATION AND INTERPRETATION OF BOREHOLE GEOPHYSICAL MEASUREMENTS USING hp FINTE ELEMENTS

hp-FEM team: D. Pardo, M. J. Nam , L. Demkowicz,

C. Torres-Verdín, V. M. Calo,

M. Paszynski, and P. J. Matuszyk

8th Annual Formation Evaluation Research Consortium Meeting August 14-15, 2008

Overview

- 1.Main Lines of Research and Applications (D. Pardo)
 - Previous work
 - Main features of our technology
- 2. Application 1: Tri-Axial Induction Instruments (M. J. Nam)
- 3. Application 2: Dual-Laterolog Instruments (M. J. Nam)
- 4. Multi-Physics Inversion (D. Pardo)
- 5. Sonic Instruments (L. Demkowicz)

Previous Work

Type of Problems We Can Solve with our *hp*-FEM software

Applications	Borehole Measurements		Marine Controlled Source EM	
Spatial Dimensions	2D		3D	
Well Type	Vertical Well	Deviated Well		Eccentered Tool
Logging Instruments	LWD/MWD	Normal/Laterolog		Dual-Laterolog
	Induction	Dielectric Instruments		Cross-Well
Frequency	0 ~ 10 GHz			
Materials	Isotropic	Anisotropic		
Physical Devices	Magnetic Buffers	Insulators		Casing
	Casing Imperfections	Displacement Currents		Combination of All
Sources	Finite Size	Dipoles		Solenoidal
	Antennas	in Any Direction		Antennas
	Toroidal Antennas	Electrodes		Combination of All
Invasion	Water	Oil		etc.

MOST (OIL-INDUSTRY) GEOPHYSICAL PROBLEMS

Main Features of Our Technology

1. Self-Adaptive Goal-Oriented hp-Refinements

2. Fourier Finite-Element Method

3. Parallel Implementation

Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size *h* and the polynomial order of approximation *p* throughout the grid.

Optimal grids are automatically generated by the *hp*-algorithm.

The self-adaptive goal-oriented *hp*-FEM provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of Interest.

Cartesian system of coordinates: (x_1, x_2, x_3)

New non-orthogonal system of coordinates: $(\zeta_1, \zeta_2, \zeta_3)$

$$\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \tan \theta \frac{\zeta_1 - \rho_1}{\rho_2 - \rho_1} \rho_2 \cos \zeta_2 \end{cases}$$

Subdomain 3

$$\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \zeta_1 \tan \theta \cos \zeta_2 \end{cases}$$

Cartesian system of coordinates: (x_1, x_2, x_3) New non-orthogonal system of coordinates: $(\zeta_1, \zeta_2, \zeta_3)$ Subdomain 3 ► X₁

Constant material coefficients in the quasi-azimuthal direction ζ_2 in the new non-orthogonal system of coordinates!!!!

For each Fourier mode, we obtain a 2D problem. Each 2D problem couples with up to five different 2D problems corresponding to different Fourier modes, therefore, constituting the resulting 3D problem.

When we use 9 Fourier Modes for the Solution:

$$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} & 0 & 0 & 0 & 0 & 0 \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} & A_{3,5} & 0 & 0 & 0 & 0 \\ 0 & A_{4,2} & A_{4,3} & A_{4,4} & A_{4,5} & A_{4,6} & 0 & 0 & 0 \\ 0 & 0 & A_{5,3} & A_{5,4} & A_{5,5} & A_{5,6} & A_{5,7} & 0 & 0 \\ 0 & 0 & 0 & A_{6,4} & A_{6,5} & A_{6,6} & A_{6,7} & A_{6,8} & 0 \\ 0 & 0 & 0 & 0 & A_{7,5} & A_{7,6} & A_{7,7} & A_{7,8} & A_{7,9} \\ 0 & 0 & 0 & 0 & 0 & A_{8,6} & A_{8,7} & A_{8,8} & A_{8,9} \\ 0 & 0 & 0 & 0 & 0 & 0 & A_{9,7} & A_{9,8} & A_{9,9} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \\ b_8 \\ b_9 \end{bmatrix}$$

A_{i,i} : represents a full 2D problem for each Fourier basis function

For each Fourier mode, we obtain a 2D problem. Each 2D problem couples with up to five different 2D problems corresponding to different Fourier modes, therefore, constituting the resulting 3D problem.

3D Parallelization Implementation

Distributed Domain Decomposition

SELF-ADAPTIVE *hp* FINITE-ELEMENT SIMULATION OF MULTI-COMPONENT INDUCTION MEASUREMENTS ACUIRED IN DIPPING, INVADED, AND ANISOTROPIC FORMATIONS

M. J. Nam, D. Pardo, and C. Torres-Verdín, The University of Texas at Austin

hp-FEM team: D. Pardo, M. J. Nam, L. Demkowicz, C. Torres-Verdín,

V. M. Calo, M. Paszynski, and P. J. Matuszik

8th Annual Formation Evaluation Research Consortium Meeting August 14-15, 2008

Overview

- 1. Main Lines of Research and Applications (D. Pardo)
 - Previous work
 - Main features of our technology
- 2. Application 1: Tri-Axial Induction Instruments (M. J. Nam)
- 3. Application 2: Dual-Laterolog Instruments (M. J. Nam)
- 4. Multi-Physics Inversion (D. Pardo)
- 5. Sonic Instruments (L. Demkowicz)

Outline

- Introduction to Tri-Axial Induction
- Method
- •Numerical Results:
 - -Verification of 3D Method for Tri-Axial Induction Tool
 - -Dipping, Invaded, Anisotropic Formations
- Conclusions

Tri-Axial Induction Tool

L = 1.016 m (40 ln.)

Operating frequency: 20 kHz

 θ : dip angle

 α : tool orientation angle

3D Source Implementation

3D Source and Receiver (Delta Functions)

Coupling between source and receiver: less Gibb's phenomenon

Combination of:

- 1. A Self-Adaptive Goal-Oriented *hp*-FEM for AC problems
- **2. A Fourier Series Expansion**

in a Non-Orthogonal System of Coordinates

3. Parallel Implementation

Verification of 2.5D Simulation ($H_{xx} = H_{yy}$)

Verification of 2.5D Simulation (H_{zz})

Verification of 2.5D Simulation ($H_{xy} = H_{yx}$)

Verification of 2.5D Simulation ($H_{xz} = H_{zx}$)

Verification of 3D Simulation ($H_{xx} = H_{yy}$)

Dip angle: 60 degrees

Verification of 3D Simulation (H_{zz})

EXAS

Dip angle: 60 degrees

Description of the Tri-Axial Tool

Verification of 2.5D Simulation (H_{xx})

Verification of 3D Simulation (H_{xx})

θ = 60 degrees

Relative errors of tri-axial Induction solutions with respect to the solution for the vertical well

Model for Numerical Experiments

EXAS

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Borehole: 0.1 m in radius 100 ohm-m in resistivity

Invasion in the third and fourth layers

Anisotropy in the second and fourth layers

 θ = 0, 30 and 60 degrees

Convergence History of H_{xx} **in Vertical Well**

Convergence History of H_{xx} **in Deviated Well**

Deviated Wells (0, 30 & 60 degrees)

Deviated Wells (0, 30 & 60 degrees)

8th Annual Formation Evaluation Consortium Meeting, 2008

H_{zz} in Deviated Wells with Invasion (Re.)

H_{zz} in Deviated Wells with Invasion (Im.)

H_{xx} in Deviated Wells with Invasion (Re.)

H_{xx} in Deviated Wells with Invasion (Im.)

H_{yy} in Deviated Wells with Invasion (Re.)

H_{yy} in Deviated Wells with Invasion (Im.)

H_{zz} in Deviated Wells with Anisotropy (Re.)

H_{77} in Deviated Wells with Anisotropy (Im.)

H_{xx} in Deviated Wells with Anisotropy (Re.)

H_{xx} in Deviated Wells with Anisotropy (Im.)

H_{yy} in Deviated Wells with Anisotropy (Re.)

H_{yy} in Deviated Wells with Anisotropy (Im.)

H_{xx} at 20 KHz and 2 MHz in Vertical Well

EXAS

8th Annual Formation Evaluation Consortium Meeting, 2008

Conclusions

- We successfully simulated 3D tri-axial induction measurements by combining the use of a Fourier series expansion in a non-orthogonal system of coordinates with a 2D high-order, self-adaptive *hp* finite-element method.
- Dip angle effects on tri-axial tools are larger than on more traditional induction logging instruments.
- Anisotropy effects on H_{xx} and H_{yy} decrease with increasing dip angle, while those on H_{zz} increase.
- H_{xx} at 20 kHz exhibits smaller variations than at 2 MHz.

Acknowledgements

Sponsors of UT Austin's consortium on Formation Evaluation:

