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Overview

1. Introduction to a Goal-Oriented High-Order Self-

Adaptive hp-Finite Element Method

2. A Fourier Series Expansion in a Non-Orthogonal System 

of Coordinates
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of Coordinates

3. Parallel Implementation

4. Introduction to Dual-Laterolog Instruments

5. Numerical Results
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Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size
h and the polynomial order of
approximation p throughout
the grid.

Optimal grids are automatically
generated by the hp-algorithm.
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generated by the hp-algorithm.

The self-adaptive goal-oriented
hp-FEM provides exponential
convergence rates in terms of
the CPU time vs. the error in
a user prescribed quantity of
Interest.
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DISCRETIZATION

The h-Finite Element Method
1. Convergence limited by the polynomial degree, and large material

contrasts.

2. Optimal h-grids do NOT converge exponentially in real applications.

3. They may “lock” (100% error).

The p-Finite Element Method
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The hp-Finite Element Method
1. Exponential convergence feasible for ALL solutions.

2. Optimal hp-grids DO converge exponentially in real applications.

3. If initial hp-grid is not adequate, results will still be great.

The p-Finite Element Method
1. Exponential convergence feasible for analytical (“nice”) solutions.

2. Optimal p-grids do NOT converge exponentially in real applications.

3. If initial h-grid is not adequate, the p-method will fail miserably.
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DISCRETIZATION I

Energy norm based fully automatic hp-adaptive strategy

Coarse grids
(h, p)

Fine grids
(h/2, p+1)

Global hp-refinement
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Global hp-refinement
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DISCRETIZATION II

Goal-Oriented Adaptivity

Coarse grids
(h, p)

Fine grids
(h/2, p+1)

Solve DIRECT (Y) and DUAL (G) problems
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Solve DIRECT (Y) and DUAL (G) problems

on both grids (h, p) and (h/2, p+1)

Solve DIRECT (Y) and DUAL (G) problems

on both grids (h, p) and (h/2, p+1)
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DISCRETIZATION II

Motivation (Goal-Oriented Adaptivity)

Solution decays exponentially.

|E(T )|/|E(R)| ≈ 1060

Results using energy-norm adaptivity:
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Results using energy-norm adaptivity:

– Energy-norm error: 0.001%

– Relative error in the quantity of             

interest > 1030%.
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DISCRETIZATION II

Motivation (Goal-Oriented Adaptivity)

Solution decays exponentially.

|E(T )|/|E(R)| ≈ 1060

Results using energy-norm adaptivity:
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Results using energy-norm adaptivity:

– Energy-norm error: 0.001%

– Relative error in the quantity of             

interest > 1030%.

Goal-oriented adaptivity is needed!!!
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DISCRETIZATION

Motivation (Goal-Oriented Adaptivity)
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3D Deviated Well
Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (z1, z2, z3)
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3D Deviated Well
Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (z1, z2, z3)
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Constant material coefficients in the quasi-azimuthal direction z2

in the new non-orthogonal system of coordinates!!!!
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3D Deviated Well

For each Fourier mode, we obtain a 2D problem. 
Each 2D problem couples with up to five different 2D 
problems corresponding to different Fourier modes, 
therefore, constituting the resulting 3D problem.

1,1 1,2 1,3 0 0 0 0 0 0A A A
A A A A
é 1 1x b

x b
ù é ù é ù

ê ú ê ú ê ú
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When we use 9 Fourier 
modes for the Solution:

Ai,j : represents a full 2D problem for each Fourier basis function
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Parallelization Implementation

Distributed Domain
Decomposition Shared Domain Decomposition!!
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Dual Laterolog (DLL)
• Determination of Intensities (Wj)

of Bucking Currents

Focusing Conditions
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Post-Processing Method
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One problem with several RHSs
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A1'=1

A2' =1

A0=1

with c = 0.5
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Embedded Post-Processing Method (EPPM)

On a Grid
Solution

Solution
hp-Refined Grid

Error Smaller 
than 1%?

Post-Processing Method

Solutions for

Coarse Grid
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Optimal Grid,

Optimal Intensities    

& Solution

Optimal 
Refinements

Potential on Mi
(Superposition)

Focusing
conditions

Compute Wj

Solving one problem with several RHSs

No
Yes
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Modeled DLL tool

The resistivities and radial lengths
of electrode and mandrel.   
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The vertical dimensions and locations of each electrode:
We followed the vertical tool configuration of a commercial tool
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Invaded Formation

Effects of Invasion: LLs ↑
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Borehole: 0.1 m in radius

0.1 ohm-m in resistivity
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Anisotropic Formation

Effects of anisotropy: LLs ↑
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LLd: effects of anisotropy are 

negligible in conductive layer
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Conclusions

•We have successfully simulated 3D dual-laterolog
measurements by combining the use of a Fourier
series expansion in a non-orthogonal system of
coordinates with a 2D higher-order self-adaptive hp
finite element method.

•We have generated optimal hp finite element grids
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•We have generated optimal hp finite element grids
and optimal intensities of currents for simulation of
dual-laterolog measurements using an embedded
post-processing technique in the hp finite element
method.

•Effects of dip angle are larger in conductive layers
than in resistive layers.

•Effects of anisotropy increase as dip angle increases.
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