SELF-ADAPTIVE hp FI NITE-ELEMENT SI MULATI ON OF MULTI-COMPONENT I NDUCTI ON MEASUREMENTS ACQUI RED IN DI PPI NG, I NVADED, AND ANI SOTROPIC FORMATIONS

M. J. Nam${ }^{\mathbf{1}}$, D. Pardo ${ }^{2 *}$, and C. Torres-Verdín¹,
${ }^{1}$ The University of Texas at Austin, USA
${ }^{2}$ Basque Center for Applied Mathematics, Spain *Formerly, at The University of Texas at Austin, USA

Presentation at SIG meeting (SPWLA) Oct. 21, 2008. Houston, TX, USA

Outline

- Main Features of Our Technology
- A Self-Adaptive Goal-Oriented hp-FEM
- Fourier Finite-Element Method
- Introduction to Tri-Axial I nduction
- Numerical Results:
- in Dipping, Invaded, Anisotropic Formations (Resistive Mandrel)
- with Tool Eccentricity (Conductive/ Resistive Mandrel)
- Conclusions

Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size h and the polynomial order of approximation p throughout the grid.

Optimal grids are automatically generated by the hp-algorithm.

The self-adaptive goal-oriented hp-FEM provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of Interest.

3D Deviated Well

Cartesian system of coordinates: (x_{1}, x_{2}, x_{3})
New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Subdomain 1

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

Subdomain 3

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}+\zeta_{1} \tan \theta \cos \zeta_{2}
\end{array}\right.
$$

3D Deviated Well

Cartesian system of coordinates: (x_{1}, x_{2}, x_{3})
New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Constant material coefficients in the quasi-azimuthal direction ζ_{2} in the new non-orthogonal system of coordinates!!!!

Fourier Series Expansion in ζ_{2}

Fourier Series Expansion of a Function ω in ζ_{2} :

$$
\omega=\sum_{l=-\infty}^{l=\infty} \omega_{l} e^{j l \zeta_{2}}=\sum_{l=-\infty}^{l=\infty} F_{l}(\omega) e^{j l \zeta_{2}}
$$

Final Variational Formulation of DC after Fourier Series Expansion in ζ_{2} :

Find $F_{l}(u) \in F_{l}\left(\underline{u}_{D}\right)+H_{D}^{1}\left(\Omega_{2 D}\right)$ such that:
$\left.\sum_{k=-\infty}^{k=0} \sum_{l=k-2}^{l=k+2}\right\} F_{k}\left(\frac{\partial v}{\partial \zeta}\right), F_{k-l}\left(\sigma_{N E W}\right) F_{l}\left(\frac{\partial u}{\partial \zeta}\right)>_{L^{2}\left(\Omega_{2 D}\right)}$
\leftarrow Mono-modal test function:

$$
v=v_{k} e^{j k \zeta_{2}}
$$

$=\sum_{k=-\infty}^{k=\infty}\left\langle F_{k}(v), F_{k}\left(f_{N E W}\right)>_{L^{2}\left(\Omega_{2 D}\right)}+<F_{k}(v), F_{k}\left(g_{N E W}\right)>_{L^{2}\left(\Omega_{2 D}\right)}\right] \forall F_{k}(v) \in H_{D}^{1}(\Omega)$,
because $F_{k-l}\left(\sigma_{\text {NEW }}\right)=0$ for every $|k-l|>2$.
Only Five Fourier Modes (I) are enough to represent $\sigma_{\text {NEW }}$ EXACTLY for each k.
Therefore, we need to truncate only Fourier Modes (k) for 3D solution.

Eccentered Tool

Cartesian system of coordinates: (x_{1}, x_{2}, x_{3})
New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Subdomain 1
$\left\{\begin{array}{l}x_{1}=\rho_{0}+\zeta_{1} \cos \zeta_{2} \\ x_{2}=\zeta_{1} \sin \zeta_{2} \\ x_{3}=\zeta_{3}\end{array}\right.$

Subdomain 2

$$
\begin{aligned}
& x_{1}=\frac{\zeta_{1}-\rho_{2}}{\rho_{1}-\rho_{2}} \rho_{0}+\zeta_{1} \cos \zeta_{2} \\
& x_{2}=\zeta_{1} \sin \zeta_{2} \\
& x_{3}=\zeta_{3}
\end{aligned}
$$

Subdomain 3

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

Tri-Axial Induction Tool

$$
L=1.016 \mathrm{~m} \text { (40 In.) }
$$

Operating frequency: 20 kHz

: dip angle
α : tool orientation angle

3D Source I mplementation

1. Solenoidal Coil (J_{ϕ}) for M_{z}
\rightarrow becoming a 2D source in (ρ, ϕ, z)
2. Delta Function for 3D source M_{x} or M_{y}

$$
f(\phi)=\delta\left(\phi-\phi_{0}\right)
$$

ϕ_{0} : the position of the center of the peak (0° for $M_{x} ; 90^{\circ}$ for M_{y})

3D Source and Receiver (Delta Functions)

Coupling between source and receiver: less Gibb's phenomenon

Verification of 2.5D Simulation ($\mathrm{H}_{\mathrm{xx}}=\mathrm{H}_{\mathrm{yy}}$)

em1D: K. H. Lee 1984, pers. comm.

Verification of 2.5D Simulation ($\mathrm{H}_{\mathrm{xy}}=\mathrm{H}_{\mathrm{yx}}$)

Verification of 2.5D Simulation ($\mathrm{H}_{\mathrm{xz}}=\mathrm{H}_{\mathrm{zx}}$)

Verification of 3D Simulation ($\mathrm{H}_{\mathrm{xx}}=\mathrm{H}_{\mathrm{yy}}$)

Real part of Hxx at 20 kHz

Dip angle: 60 degrees

Converged solutions with 9 Fourier mode

Verification of 3D Simulation ($\mathrm{H}_{z z}$)

Dip angle: 60 degrees

Converged solutions with 5 Fourier mode

Description of the Tri-Axial Tool

Operating frequency: 20 kHz

Verification of 2.5D Simulation ($\mathrm{H}_{x x}$)

Relative errors of tri-axial induction solutions with respect to the solution with 9 Fourier modes

Verification of 3D Simulation ($\mathrm{H}_{x x}$)

$\theta=60$ degrees

Relative errors of tri-axial Induction solutions with respect to the solution for the vertical well

Model for Experiments (Deviated Well)

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Borehole: 0.1 m in radius 100 ohm-m in resistivity
$\theta=0,30$ and 60 degrees
Resistive mandrel (10^{6} ohm-m, μ_{0})
Invasion in the third and fourth layers
Anisotropy in the second and fourth layers

Convergence History of H_{xx} in Vertical Well

Converged solutions
with 5 Fourier modes

Convergence History of $\mathrm{H}_{x x}$ in Deviated Well

$\theta=60$ degrees

> Converged solutions with 9 Fourier modes

Deviated Wells (0, 30 \& 60 degrees)

Dip angle has larger effects on tri-axial tools

H_{zz} in Deviated Wells with I nvasion (I m.)

vertical

60 degrees

Shallow invasion with $R=0.1 \mathrm{~m}$

H_{xx} in Deviated Wells with I nvasion (I m.)

vertical

Shallow invasion with $R=0.1 \mathrm{~m}$

Small effects of invasion

60 degrees

H_{yy} in Deviated Wells with I nvasion (I m.)

vertical

60 degrees

Shallow invasion with $R=0.1 \mathrm{~m}$

Small effects of invasion

H_{zz} in Deviated Wells with Anisotropy (Im.)

vertical

Effects of anisotropy increase with increasing dip angle

60 degrees

H_{xx} in Deviated Wells with Anisotropy (I m.)

vertical

Effects of anisotropy decrease with increasing dip angle

30 degrees

H_{yy} in Deviated Wells with Anisotropy (I m.)

vertical

Effects of anisotropy decrease with increasing dip angle

60 degrees

H_{xx} at 20 KHz and 2 MHz in Vertical Well

Larger variations at 2 MHz than at $\mathbf{2 0 ~ k H z}$

Model for Experiments (Eccentered Tool)

Five layers: 100, 0.05, 10000, 1 and $20 \mathrm{ohm}-\mathrm{m}$ from top to bottom

Radius of borehole: 0.1 m

Model for Experiments (Eccentered Tool)

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Radius of borehole: 0.1 m
Conductive borehole (CB): 1 ohm-m
Resistive borehole (RB) : 1000 ohm-m
Conductive mandrel (CM):

$$
10^{-6} \text { ohm-m, } 100 \mu_{0}
$$

Resistive mandrel (RM): 10^{6} ohm-m, μ_{0}

Eccentered distance (ρ_{0}):
$0,0.45,2.25,3.15 \mathrm{~cm}$

$\mathrm{H}_{\mathrm{zz}}\left(\rho_{0}: 0,0.45,2.25,3.15 \mathrm{~cm}\right)$

CM: Conductive Mandrel (10^{-6} ohm-m, $100 \mu_{0}$)
RM: Resistive Mandrel (10^{6} ohm-m)

CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole (10^{3} ohm-m)

No big difference between

 results with RM and CMSlight deviations
in results with RM

$\mathrm{H}_{\mathrm{zz}}\left(\rho_{0}: 0,0.45,2.25,3.15 \mathrm{~cm}\right)$

CM: Conductive Mandrel (10^{-6} ohm-m, $100 \mu_{0}$)
RM: Resistive Mandrel (10^{6} ohm-m)

CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole ($10^{3} \mathrm{ohm}-\mathrm{m}$)

No big difference between results with RM and CM

Slight deviations
in results with RM

$\mathrm{H}_{\mathrm{xx}}\left(\rho_{0}: 0,0.45,2.25,3.15 \mathrm{~cm}\right)$

CM: Conductive Mandrel (10^{-6} ohm-m, $100 \mu_{0}$)
RM: Resistive Mandrel (10^{6} ohm-m)

CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole ($10^{3} \mathrm{ohm}-\mathrm{m}$)

Different results between

RM and CM

More deviations

in results with RM

TEXAS

$\mathrm{H}_{\mathrm{xx}}\left(\rho_{0}: 0,0.45,2.25,3.15 \mathrm{~cm}\right)$

CM: Conductive Mandrel (10^{-6} ohm-m, $100 \mu_{0}$)
RM: Resistive Mandrel (10^{6} ohm-m)

CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole (10^{3} ohm-m)

Different results between

RM and CM

More deviations

 in results with RM
Conclusions

-We successfully simulated 3D tri-axial induction measurements by combining the use of a Fourier series expansion in a non-orthogonal system of coordinates with a 2D high-order, self-adaptive hp finite-element method.

- Dip angle effects on tri-axial tools are larger than on more traditional induction logging instruments.
- Anisotropy effects on $\mathrm{H}_{x x}$ and H_{yy} decrease with increasing dip angle, while those on H_{zz} increase.
- H_{xx} at 20 kHz exhibits smaller variations than at 2 MHz .
- Differences in stability between conductive and resistive mandrels in the presence of tool eccentricity.

Acknowledgements

Sponsors of UT Austin's consortium on Formation Evaluation:

