SELF-ADAPTIVE *hp* FINITE-ELEMENT SIMULATION OF MULTI-COMPONENT INDUCTION MEASUREMENTS ACQUIRED IN DIPPING, INVADED, AND ANISOTROPIC FORMATIONS

M. J. Nam¹, D. Pardo^{2*}, and C. Torres-Verdín¹,

¹The University of Texas at Austin, USA ²Basque Center for Applied Mathematics, Spain *Formerly, at The University of Texas at Austin, USA

Presentation at SIG meeting (SPWLA) Oct. 21, 2008.

Houston, TX, USA

Outline

Main Features of Our Technology

- A Self-Adaptive Goal-Oriented *hp*-FEM
- Fourier Finite-Element Method
- Introduction to Tri-Axial Induction
- Numerical Results:
 - in Dipping, Invaded, Anisotropic Formations (Resistive Mandrel)
 - with Tool Eccentricity (Conductive/Resistive Mandrel)
- Conclusions

Self-Adaptive Goal-Oriented hp-FEM

TEXAS

We vary locally the element size *h* and the polynomial order of approximation *p* throughout the grid.

Optimal grids are automatically generated by the *hp*-algorithm.

The self-adaptive goal-oriented *hp*-FEM provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of Interest.

3D Deviated Well

Cartesian system of coordinates: (x_1, x_2, x_3)

New non-orthogonal system of coordinates: $(\zeta_1, \zeta_2, \zeta_3)$

Subdomain 1

TEXAS

Subdomain 2

$$\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 \end{cases} \begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \tan \theta \frac{\zeta_1 - \rho_1}{\rho_2 - \rho_1} \rho_2 \cos \zeta_2 \end{cases} \begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \zeta_1 \tan \theta \cos \zeta_2 \end{cases}$$

Subdomain 3

3D Deviated Well

Constant material coefficients in the quasi-azimuthal direction ζ_2 in the new non-orthogonal system of coordinates!!!!

Fourier Series Expansion in ζ_2

Fourier Series Expansion of a Function ω in ζ_2 :

$$\omega = \sum_{l=-\infty}^{l=\infty} \omega_l e^{jl\zeta_2} = \sum_{l=-\infty}^{l=\infty} F_l(\omega) e^{jl\zeta_2}$$

Final Variational Formulation of DC after Fourier Series Expansion in ζ_2 :

because $F_{k-l}(\sigma_{NEW}) = 0$ for every |k-l| > 2.

Only Five Fourier Modes (*l*) are enough to represent σ_{NEW} EXACTLY for each *k*.

Therefore, we need to truncate only Fourier Modes (k) for 3D solution.

Subdomain 3

Trameterization

Eccentered Tool

Cartesian system of coordinates: (x_1, x_2, x_3) New non-orthogonal system of coordinates: $(\zeta_1, \zeta_2, \zeta_3)$ Subdomain 3 x_2 $\rightarrow x_1$ x_3 P Subdomain Subdomain 2 Subdomain 3

Subdomain 1

$$\begin{cases} x_1 = \rho_0 + \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 \end{cases}$$

TEXAS

Subdomain 2

 x_1

 X_2

$$x_1 = \frac{\zeta_1 - \rho_2}{\rho_1 - \rho_2} \rho_0 + \zeta_1 \cos \zeta_2$$
$$x_2 = \zeta_1 \sin \zeta_2$$
$$x_3 = \zeta_3$$

Subdomain 3

$$x_1 = \zeta_1 \cos \zeta_2$$
$$x_2 = \zeta_1 \sin \zeta_2$$
$$x_3 = \zeta_3$$

Tri-Axial Induction Tool

L = 1.016 m (40 ln.)

Operating frequency: 20 kHz

 α : tool orientation angle

3D Source Implementation

- **1.** Solenoidal Coil (J_{ϕ}) for M_z \rightarrow becoming a 2D source in (ρ, ϕ, z)
- **2.** Delta Function for 3D source M_x or M_y

х

 M_{τ}^{T}

3D Source and Receiver (Delta Functions)

Coupling between source and receiver: less Gibb's phenomenon

Verification of 2.5D Simulation ($H_{xx} = H_{yy}$)

Verification of 2.5D Simulation ($H_{xy} = H_{yx}$)

TEXAS

Verification of 2.5D Simulation ($H_{xz} = H_{zx}$)

TEXAS

Verification of 3D Simulation ($H_{XX} = H_{VV}$)

Dip angle: 60 degrees

Converged solutions with 9 Fourier mode

Verification of 3D Simulation (H_{zz})

Dip angle: 60 degrees

Converged solutions with 5 Fourier mode

Description of the Tri-Axial Tool

TEXAS

M. J. Nam, D. Pardo, C. Torres-Verdín

Verification of 2.5D Simulation (H_{xx})

EXAS

Relative errors of tri-axial induction solutions with respect to the solution with 9 Fourier modes

Verification of 3D Simulation (H_{xx})

θ = 60 degrees

EXAS

Relative errors of tri-axial Induction solutions with respect to the solution for the vertical well

Model for Experiments (Deviated Well)

TEXAS

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Borehole: 0.1 m in radius 100 ohm-m in resistivity

 $\theta = 0$, 30 and 60 degrees

Resistive mandrel (10⁶ ohm-m, μ_0)

Invasion in the third and fourth layers

Anisotropy in the second and fourth layers

Convergence History of H_{xx} **in Vertical Well**

M. J. Nam, D. Pardo, C. Torres-Verdín

Convergence History of H_{XX} in Deviated Well

Deviated Wells (0, 30 & 60 degrees)

H_{zz} in Deviated Wells with Invasion (Im.)

H_{xx} in Deviated Wells with Invasion (Im.)

H_{yy} in Deviated Wells with Invasion (Im.)

H_{zz} in Deviated Wells with Anisotropy (Im.)

H_{xx} in Deviated Wells with Anisotropy (Im.)

H_{yy} in Deviated Wells with Anisotropy (Im.)

H_{xx} at 20 KHz and 2 MHz in Vertical Well

Model for Experiments (Eccentered Tool)

TEXAS

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Radius of borehole: 0.1 m

Model for Experiments (Eccentered Tool)

EXAS

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom 31

Radius of borehole: 0.1 m

Conductive borehole (CB): 1 ohm-m Resistive borehole (RB) : 1000 ohm-m

Conductive mandrel (CM): 10^{-6} ohm-m, $100\mu_0$ Resistive mandrel (RM): 10^6 ohm-m, μ_0

Eccentered distance (ρ_0): 0, 0.45, 2.25, 3.15 cm

H_{zz} (ρ_0 : 0, 0.45, 2.25, 3.15 cm)

EXAS

CM: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$) RM: Resistive Mandrel (10^{6} ohm-m)

- CB: Conductive Borehole (1 ohm-m)
- RB: Resistive Borehole (10³ ohm-m)

No big difference between results with RM and CM

Slight deviations in results with RM

H_{zz} (ρ_0 : 0, 0.45, 2.25, 3.15 cm)

TEXAS

CM: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$) RM: Resistive Mandrel (10^{6} ohm-m)

CB: Conductive Borehole (1 ohm-m) RB: Resistive Borehole (10³ ohm-m)

No big difference between results with RM and CM

Slight deviations in results with RM

H_{xx} (ρ_0 : 0, 0.45, 2.25, 3.15 cm)

TEXAS

CM: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$) RM: Resistive Mandrel (10^{6} ohm-m)

- CB: Conductive Borehole (1 ohm-m)
- RB: Resistive Borehole (10³ ohm-m)

Different results between RM and CM

More deviations in results with RM

H_{xx} (ρ_0 : 0, 0.45, 2.25, 3.15 cm)

TEXAS

M. J. Nam, D. Pardo, C. Torres-Verdín

Conclusions

- We successfully simulated 3D tri-axial induction measurements by combining the use of a Fourier series expansion in a non-orthogonal system of coordinates with a 2D high-order, self-adaptive *hp* finite-element method.
- Dip angle effects on tri-axial tools are larger than on more traditional induction logging instruments.
- Anisotropy effects on H_{xx} and H_{yy} decrease with increasing dip angle, while those on H_{zz} increase.
- H_{xx} at 20 kHz exhibits smaller variations than at 2 MHz.
- Differences in stability between conductive and resistive mandrels in the presence of tool eccentricity.

Acknowledgements

Sponsors of UT Austin's consortium on Formation Evaluation:

