ASYMPTOTIC LOWER BOUNDS FOR SOLUTIONS TO DISPERSIVE EQUATIONS

Luis VEGA, UPV/EHU
Mexico DF, October 19, 2011

Asymptotics for Schrödinger Equations

$$
\partial_{t} u=i(\Delta u+V u) \quad x \in \mathbb{R}^{d} \quad t \in \mathbb{R}
$$

- $V=V(x, t)$
- $V= \pm|u|^{p}$
- $\Delta \rightsquigarrow \mathcal{L}=\Delta_{y}-\Delta_{z} \quad ; \quad x=(y, z)$
(a) Defocusing
(b) Focusing

Defocusing Case $\quad d \geq 3$

- $V=-|u|^{p} \quad \frac{4}{d}<p \leq \frac{4}{d-2}$
- $V=V(x)$ short range and repulsive

Theorem 1 (with N. Visciglia).-

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \frac{1}{R} \int_{B_{R}} \int_{-\infty}^{\infty}|\nabla u(x, t)|^{2} & =\|u(\cdot, 0)\|_{\dot{H}_{V}^{1 / 2}\left(\mathbb{R}^{\alpha}\right)}^{2} \\
(& \left.=\pi\left(\left\|\varphi_{+}\right\|_{\dot{H}_{x}^{1 / 2}}^{2}+\left\|\varphi_{-}\right\|_{\dot{H}_{x}^{1 / 2}}^{2}\right)\right)
\end{aligned}
$$

Remarks.-
(i) $\nabla \hookrightarrow \partial_{r}$
(ii) $d=3$ slightly different
(iii) Uniqueness result

Proofs: Morawetz/Virial Identity

$$
\begin{aligned}
& H(t)=\int \psi(|x|)|u(x, t)|^{2} d x \\
& \dot{H}(t)=-2 \operatorname{Im} \int_{\mathbb{R}^{d}} \nabla \psi \nabla u \bar{u} d x \\
& \ddot{H}=?
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \int_{-T}^{T} \int_{\mathbb{R}^{d}}\left(\nabla_{x} \bar{u} D^{2} \psi \nabla_{x} u-\right.\left.\left(\Delta^{2} \psi+4 \partial_{r} V \partial_{r} \psi\right) \frac{|u|^{2}}{4}\right) d x d t \\
&=\psi^{\prime}(\infty)\|f\|_{\dot{H}_{V}^{1 / 2}\left(\mathbb{R}^{d}\right)}^{2}
\end{aligned}
$$

- $\lim _{t \rightarrow \infty} \dot{H}(t)=\frac{1}{2} \psi^{\prime}(\infty)\|f\|_{\dot{H}_{V}^{1 / 2}\left(\mathbb{R}^{d}\right)}^{2}$
- $-\Delta^{2} \psi \geq 0 \quad \Longrightarrow \quad d \geq 3$.

Remark.- Similar result for the wave equation: equipartition of energy.

Focusing case (L. Escauriaza, C.E. Kenig, G. Ponce)

Two scenarios:
(i) Blowing up profiles.

$$
\begin{gathered}
\partial_{t} u=i\left(\Delta u+|u|^{4 / d} u\right) \quad x \in \mathbb{R}^{d} \\
u(x, 0)=u_{0}(x) \in L^{2}\left(\mathbb{R}^{d}\right) \\
u(x, t)=\frac{1}{(1-t)^{d / 2}} e^{i|x|^{2} / 4(1-t)} e^{i w /(1-t)} Q_{w}\left(\frac{x}{1-t}\right) \\
w Q_{w}=\Delta Q_{w}+Q_{w}^{\frac{4}{d}+1} \quad ; \quad w>0 \quad Q_{w}=Q_{w}(r) \quad Q \geq 0 \\
Q_{w}=w^{d / 4} Q\left(w^{1 / 2} x\right) \quad ; \quad Q \text { with linear exponential decay }
\end{gathered}
$$

Q1: Is this linear exponential decay optimal?
Q2: What happens if $\Delta \hookrightarrow \mathcal{L}=\Delta_{y}-\Delta_{z} \quad x=(y, z)$?
(ii) Eigenfunctions/Eigenvalues:

$$
\begin{aligned}
\partial_{t} u & =i(-\Delta+V) u \\
(-\Delta+V) u & =w u \\
V & =V(x) \text { real } w<0
\end{aligned}
$$

Meshkov:
$(\Delta+V) u=0 \quad x \in \mathbb{R}^{n} \quad V=V(x) \in L^{\infty}\left(\mathbb{R}^{n}\right) \quad$ maybe complex If $\quad \int e^{2 a|x|^{4 / 3}}|u|^{2} d x>0 \quad \forall a>0 \quad$ then $\quad u \equiv 0$.
The result is sharp.
Cruz-Sampedro:

$$
\begin{gathered}
|V(x)| \leq \frac{C}{(1+|x|)^{1 / 2^{+}}} \\
\int e^{2 a|x|}|u|^{2} d x<0 \quad \forall a>0 \quad \text { then } \quad u \equiv 0
\end{gathered}
$$

Q3: What happens if $V=V(x, t)$?

Theorem 2.- Assume u is a smooth solution of

$$
\left\{\begin{aligned}
\partial_{t} u & =i\left(\mathcal{L} u \pm|u|^{p} u\right) \quad x \in \mathbb{R}^{d} \quad t \in \mathbb{R} \quad p=\frac{4}{d} \quad\left(p \geq \frac{4}{d}\right) \\
u(x, 0) & =u_{0}
\end{aligned}\right.
$$

such that there exists $Q=Q(x)$ with

$$
|u(x, t)| \leq \frac{1}{(1-t)^{d / 2}} Q\left(\frac{x}{1-t}\right) \quad t \in(-1,1)
$$

Then there exists λ_{0} big enough such that if $\lambda \geq \lambda_{0}$ and

$$
\int e^{\lambda|x|} Q^{2}(x) d x<+\infty
$$

then $u \equiv 0$.

Theorem 3.- If $u \in H^{1}\left(\mathbb{R}^{d}\right)$ is a solution of

$$
\left\{\begin{array}{ll}
\bullet & \partial_{t} u=i(\mathcal{L}+V(x, t)) u \\
\bullet & ; V(x, t) \left\lvert\, \leq \frac{C}{(1+|x|)^{1 / 2^{+} \epsilon}}\right.
\end{array} \quad \quad \epsilon>0\right.
$$

Then there exists $\lambda=\lambda_{0}\left(\|V\|_{L^{\infty}}, \epsilon\right)$ such that if

$$
(*) \quad \sup _{t} \int e^{2 \lambda|x|}|u(x, t)|^{2} d x<+\infty
$$

for $\lambda \geq \lambda_{0}$ then $u \equiv 0$.

Remarks.

- Galilean invariance gives a similar result for traveling wave solutions.
- The result can be extended to Laplace equation. The question is then about the existence of wave guides (j.w. with L. Escauriaza and L. Fanelli).
- (*) can be relaxed.

About the Proofs

Blow up:
Pseudo conformal transformation:

$$
u(x, t)=\frac{1}{(1-t)^{d / 2}} w\left(\frac{x}{1-t}, \frac{1}{1-t}\right) e^{i \frac{|x|^{2}}{4(1-t)}}
$$

Then u satisfies a similar equation but $T=1$ becomes $T=+\infty$.
The proof follows a similar argument to the one of Theorem 3.
Notice that the L^{2} norm is a preserved quantity. Hence if it is zero at infinity the solution is zero.

Proof of Theorem 3

$$
\begin{aligned}
H(t) & =\int e^{2 \lambda \varphi}|u(x, t)|^{2} d x \\
& =\int|w(x, t)|^{2} d x
\end{aligned}
$$

\ddot{H} ?

$$
\begin{aligned}
w & =e^{\lambda \varphi} u \\
\partial_{t} w & =(S+\mathcal{A}) w+i V(x, t) w \\
\mathcal{L} & =\Delta: \quad S=-i \lambda(2 \nabla \varphi \cdot \nabla+\Delta \varphi) \\
\mathcal{A} & =i\left(\Delta+\lambda^{2}|\nabla \varphi|^{2}\right) \\
(\text { If } V & \equiv 0) \\
\dot{H}(t) & =2\langle S w, w\rangle \\
\ddot{H}(t) & =2\langle(S \mathcal{A}-\mathcal{A} S) w, w\rangle+4\langle S w, S w\rangle
\end{aligned}
$$

$$
\begin{aligned}
\langle S \mathcal{A}-\mathcal{A} S, w\rangle=4 \lambda \int \nabla w D^{2} \varphi \overline{\nabla w}-\lambda \int \Delta^{2} \varphi w \bar{w} \\
+4 \lambda^{3} \int \nabla \varphi D^{2} \varphi \nabla \varphi|w|^{2}
\end{aligned}
$$

- No obstruction in the dimension.
- $\varphi(x)=|x|^{4 / 3}$ is critical for "bounded" perturbations.
- $\langle S w, w\rangle$ uniformly bounded in t ?
- For general $\mathcal{L}: \nabla \hookrightarrow \tilde{\nabla}=\left(\nabla_{y},-\nabla_{z}\right)$.

Two Identities

$$
\begin{aligned}
& \partial_{t} w=(S+\mathcal{A}) w+F \\
& \frac{d}{d t}\langle w, w\rangle=2\langle S w, w\rangle+2 \operatorname{Re}\langle F, w\rangle \\
& \frac{d}{d t}\langle S w, w\rangle=\langle(S \mathcal{A}-\mathcal{A} S) w, w\rangle+2 \operatorname{Re}\langle S w, F w\rangle+2\langle S w, S w\rangle \\
& \eta=\eta(t)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{a}^{b} \dot{\eta}\langle S w, w\rangle= & \left.\frac{1}{2} \dot{\eta}\langle w, w\rangle\right|_{a} ^{b}-\int_{a}^{b} \ddot{\eta}\langle w, w\rangle-\int_{a}^{b} \dot{\eta} \operatorname{Re}\langle F, w\rangle \\
\int_{a}^{b} \dot{\eta}\langle S w, w\rangle= & \left.\eta\langle S w, w\rangle\right|_{a} ^{b}-\int \eta(\langle(S \mathcal{A}-\mathcal{A} S) w, w\rangle+2\langle S w, S w\rangle) \\
& -2 \int \eta \operatorname{Re}\langle S w, F w\rangle
\end{aligned}
$$

STEP 1 Use the two identities with $\eta(t)=|T-t|-\frac{1}{2}$ to obtain a uniform bound for

$$
\int_{T-1 / 2}^{T+1 / 2} \eta(t)\langle S w, S w\rangle
$$

Hence $\exists T_{n} \rightarrow \infty$ such that $\left\langle S w\left(T_{n}\right), S w\left(T_{n}\right)\right\rangle$ is uniformly bounded.

STEP 2 Take $\eta(t) \equiv 0,0 \leq t \leq 1 \quad \eta(t) \equiv 1 \quad 2<t<T_{n} \quad \eta \uparrow$. Use the two identities to obtain

$$
\int_{2}^{T_{n}}\langle(S \mathcal{A}-\mathcal{A} S) w, w\rangle d t
$$

is uniformly bounded.

STEP 3

$$
\int_{2}^{\infty} \int|u(x, t)|^{2} d x d t \leq C \int_{2}^{\infty}\langle(S \mathcal{A}-\mathcal{A} S) w, w\rangle d t
$$

Hence

$$
\|u(\cdot, 0)\|_{L^{2}}=\|u(\cdot, t)\|_{L^{2}} \longrightarrow 0
$$

and

$$
u \equiv 0
$$

We use that $V \in \mathbb{R}$ in this last step.

Step 1 and Step 2 follow from the positivity of

$$
\langle(S \mathcal{A}-\mathcal{A} S) w+V(x, t) w, w\rangle
$$

This is proved taking λ big enough and

$$
\varphi^{\prime}(r)= \begin{cases}r & r \leq 1 \\ 2-\frac{1}{\lg r} & r>2\end{cases}
$$

$\varphi^{\prime} \uparrow$ and smooth.

GRACIAS POR SU ATENCIÓN

