2005 Finite Element Rodeo

A Fully Automatic Goal-Oriented *hp*-Adaptive Finite Element Strategy for Simulations of Resistivity Logging Instruments.

> David Pardo (dzubiaur@yahoo.es), L. Demkowicz, C. Torres-Verdin, L. Tabarovsky

Collaborators: Science Department of Baker-Atlas, J. Kurtz, M. Paszynski

March 4-5, 2005

Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

OVERVIEW

- 1. Overview
- 2. Resistivity Logging Instruments: An Introduction
- 3. Maxwell's Equation
- 4. Self-Adaptive Goal-Oriented hp-FEM
- 5. Numerical Results
- 6. Conclusions and Future Work

David Pardo

4-5 Mar 2005

RESISTIVITY LOGGING INSTRUMENTS

Logging Instruments: Definition

David Pardo

4-5 Mar 2005

RESISTIVITY LOGGING INSTRUMENTS

Utility of Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS

Main Objective: To Solve an Inverse Problem

A software for solving the DIRECT problem is essential in order to solve the INVERSE problem

4-5 Mar 2005

David Pardo

RESISTIVITY LOGGING INSTRUMENTS

Resistivity Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS Final Result Obtained from the Logging Instruments

MAXWELL'S EQUATIONS (FREQUENCY DOMAIN)

Time Harmonic Maxwell's Equations:

$$\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H}$$
$$\nabla \times \mathbf{H} = (\sigma + j\omega\epsilon)\mathbf{E} + \mathbf{J}^{imp}$$

Reduced Wave Equation:

E-Formulation

H-Formulation

$$\boldsymbol{\nabla} \times \left(\frac{1}{\mu} \boldsymbol{\nabla} \times \boldsymbol{E}\right) - (\omega^2 \epsilon - j\omega\sigma) \boldsymbol{E} = -j\omega \boldsymbol{J}^{imp} \quad ; \quad \boldsymbol{\nabla} \times \left(\frac{1}{\sigma + j\omega\epsilon} \boldsymbol{\nabla} \times \boldsymbol{H}\right) + j\omega\mu \boldsymbol{H} = \boldsymbol{\nabla} \times \frac{1}{\sigma + j\omega\epsilon} \boldsymbol{J}^{imp}$$

Boundary Conditions (BC):

• Perfect Electric Conductor Surface:

$$\mathbf{n} \times \boldsymbol{E} = 0 \qquad \qquad ; \qquad \qquad \mathbf{n} \cdot \boldsymbol{H} = 0$$

• Idealized Antennas (Impressed Surface Electric Current):

$$\mathbf{n} \times \frac{1}{\mu} \nabla \times \boldsymbol{E} = -j\omega \mathbf{J}_{S}^{imp}$$
; $\mathbf{n} \times \boldsymbol{H} = \mathbf{J}_{S}^{imp}$

MAXWELL'S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation

The reduced wave equation in Ω ,

E-Formulation:
$$abla imes \left(\frac{1}{\mu} \nabla imes E\right) - (\omega^2 \epsilon - j\omega\sigma)E = -j\omega J^{imp}$$

H-Formulation: $abla imes \left(\frac{1}{\sigma + j\omega\epsilon} \nabla imes H\right) + j\omega\mu H =
abla imes rac{1}{\sigma + j\omega\epsilon} J^{imp}$

Variational formulation:

$$\begin{aligned} \mathsf{E}\text{-Formulation:} & \left\{ \begin{aligned} \mathsf{Find} \ \mathbf{E} \in H_D(\operatorname{curl};\Omega) \ \mathsf{such that:} \\ & \int_{\Omega} \frac{1}{\mu} (\nabla \times \mathbf{E}) (\nabla \times \bar{\mathbf{F}}) \ dV - \int_{\Omega} (\omega^2 \epsilon - j\omega\sigma) \mathbf{E} \cdot \bar{\mathbf{F}} \ dV = \\ & -j\omega \int_{\Omega} \mathbf{J}^{imp} \cdot \bar{\mathbf{F}} \ dV + j\omega \int_{\Gamma_N} \mathbf{J}^{imp}_S \cdot \bar{\mathbf{F}} \ dS \quad \forall \ \mathbf{F} \in H_D(\operatorname{curl};\Omega) \\ & \mathsf{H}\text{-Formulation:} \end{aligned} \right. \\ \left\{ \begin{aligned} \mathsf{Find} \ \mathbf{H} \in \tilde{\mathbf{H}}_S + H_D(\operatorname{curl};\Omega) \ \mathsf{with} \ \tilde{\mathbf{J}}^{imp}_S = \mathbf{n} \times \mathbf{H}|_S \ \mathsf{and} \ \mathsf{such that:} \\ & \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\nabla \times \mathbf{H}) (\nabla \times \bar{\mathbf{F}}) \ dV + j\omega \int_{\Omega} \mu \mathbf{H} \cdot \bar{\mathbf{F}} \ dV = \\ & \int_{\Omega} \nabla \times (\frac{1}{\sigma + j\omega\epsilon} \mathbf{J}^{imp}) \cdot \bar{\mathbf{F}} \ dV \quad \forall \ \mathbf{F} \in H_D(\operatorname{curl};\Omega) \end{aligned} \right. \end{aligned}$$

MAXWELL'S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation in cylindrical coordinates

Using cylindrical coordinates (ρ, ϕ, z) :

$$\begin{split} & \mathsf{Formulation:} \left\{ \begin{array}{l} \mathsf{Find} \ E_{\phi} \in \tilde{H}^{1}_{D}(\Omega) \ \text{such that:} \\ & \int_{\Omega} \frac{1}{\mu} (\frac{\partial E_{\phi}}{\partial z} \frac{\partial \bar{F}_{\phi}}{\partial z} + \frac{1}{\rho^{2}} \frac{\partial (\rho E_{\phi})}{\partial \rho} \frac{\partial (\rho \bar{F}_{\phi})}{\partial \rho}) \ dV - \int_{\Omega} k^{2} E_{\phi} \cdot \bar{F}_{\phi} \ dV = \\ & -j\omega \int_{\Omega} J^{imp}_{\phi} \cdot \bar{F}_{\phi} \ dV + j\omega \int_{\Gamma_{N}} J^{imp}_{\phi,S} \cdot \bar{F}_{\phi} \ dS \quad \forall \ F_{\phi} \in \tilde{H}^{1}_{D}(\Omega) \ . \\ \\ \mathsf{E}_{\rho,z}\text{-}\mathsf{Formulation:} \left\{ \begin{array}{l} \mathsf{Find} \ \mathbf{E} = (E_{\rho}, 0, E_{z}) \in \tilde{H}_{D}(\mathsf{curl}; \Omega) \ \mathsf{such that:} \\ & \int_{\Omega} \frac{1}{\mu} (\frac{\partial E_{\rho}}{\partial z} \frac{\partial \bar{F}_{\rho}}{\partial z} + \frac{\partial E_{z}}{\partial \rho} \frac{\partial \bar{F}_{z}}{\partial \rho}) - k^{2} \int_{\Omega} E_{\rho} \bar{F}_{\rho} + E_{z} \bar{F}_{z} \ dV = -j\omega \int_{\Omega} J^{imp}_{\rho} \bar{F}_{\rho} + J^{imp}_{z} \bar{F}_{z} \ dV + \\ & j\omega \int_{\Gamma_{N}} J^{imp}_{\rho,S} \bar{F}_{\rho} + J^{imp}_{z,S} \bar{F}_{z} \ dS \quad \forall \ \mathbf{F} = (F_{\rho}, 0, F_{z}) \in \tilde{H}_{D}(\mathsf{curl}; \Omega) \ . \\ \\ H_{\phi}\text{-}\mathsf{Formulation:} \left\{ \begin{array}{l} \mathsf{Find} \ H_{\phi} \in f_{1}(J^{imp}_{\rho,S}, J^{imp}_{z,S}) + \tilde{H}^{1}_{D}(\Omega) \ \mathsf{such that:} \\ & \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\frac{\partial H_{\phi}}{\partial z} \frac{\partial \bar{F}_{\phi}}{\partial z} + \frac{1}{\rho^{2}} \frac{\partial (\rho H_{\phi})}{\partial \rho} \frac{\partial (\rho \bar{F}_{\phi})}{\partial \rho}) \ dV - j\omega \int_{\Omega} \mu H_{\phi} \cdot \bar{F}_{\phi} \ dV = \\ & \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\frac{\partial J_{\rho}}{\partial z} - \frac{\partial J_{z}^{imp}}{\partial \rho}) + \tilde{H}_{D}(\mathsf{curl}; \Omega) \ \mathsf{such that:} \\ \\ H_{\rho,z}\text{-}\mathsf{Formulation:} \left\{ \begin{array}{l} \mathsf{Find} \ H = H_{\rho}, 0, H_{z} \ f_{z}(J^{imp}_{\sigma,S}) + \tilde{H}_{D}(\mathsf{curl}; \Omega) \ \forall \ \forall \ F_{\phi} \in \tilde{H}^{1}_{D}(\Omega) \ . \\ \\ H_{\rho,z}\text{-}\mathsf{Formulation:} \left\{ \begin{array}{l} \mathsf{Find} \ H = H_{\rho}, 0, H_{z} \ f_{z}(J^{imp}_{\sigma,S}) + \tilde{H}_{D}(\mathsf{curl}; \Omega) \ \mathsf{such that:} \\ \\ \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\frac{\partial J_{\rho}}{\partial z} - \frac{\partial F_{\rho}}{\partial z} + \frac{\partial H_{z}}{\partial \rho} \frac{\partial F_{\rho}}{\partial \rho}) - j\omega \int_{\Omega} \mu (H_{\rho} \bar{F}_{\rho} + H_{z} \bar{F}_{z}) \ dV = \\ \\ \\ \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\frac{\partial J_{\phi}}{\partial z} \bar{F}_{\rho} + \frac{\partial H_{z}}{\partial \rho} \frac{\partial F_{z}}}{\partial \rho} + \frac{\partial J_{\omega}}{\partial \rho} + \frac{\partial J_{\omega}}}{\partial \rho} \right) - j\omega \int_{\Omega} \mu (H_{\rho} \bar{F}_{\rho} + H_{z} \bar{F}_{z}) \ dV = \\ \\ \\ \\ \\ \\ \int_{\Omega} \frac{1}{\sigma + j\omega\epsilon} (\frac{\partial J_{\phi}}{\partial z} \bar{F}_{\rho} + \frac{\partial H_{z}}{\partial \rho} \frac{\partial F_{z}}}{\partial \rho} + \frac{\partial J_{\omega}}}{\partial \rho} + \frac{\partial J_{\omega}} + \frac{\partial J_{\omega}}}{\partial \rho} + \frac{\partial J_{\omega}}}{\partial \rho$$

What does it mean *Goal-Oriented* Adaptivity?

We consider the following problem:

 $\left\{egin{array}{ll} {\sf Find} \ \Psi \in V \ {\sf such that}: \ b(\Psi,\xi) = f(\xi) & orall \xi \in V \ . \end{array}
ight.$

What does it mean *Goal-Oriented* Adaptivity?

What does it mean *Goal-Oriented* Adaptivity?

 $rg \min_{hp:|L(e_{hp})|\leq TOL} N_{hp}$

David Pardo

SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

 $\left\{egin{array}{l} {\sf Find}\ L(\Psi), {\sf where}\ \Psi\in V {
m ~such ~that}: \ b(\Psi,\xi)=f(\xi) \quad orall \xi\in V {
m ~.} \end{array}
ight.$

We define residual $r_{hp}(\xi) = b(e_{hp}, \xi)$. We seek for solution G of:

 $\left\{ egin{array}{l} {\sf Find}\ G\in V \ {\sf such \ that}: \ r(G)=L(e_{hp}) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{l} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(\Psi,G)=L(\Psi) \quad orall \Psi\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

Mathematical Formulation (Goal-Oriented Adaptivity)

Algorithm for Goal-Oriented Adaptivity

Compute $e = e_{h/2,p+1} - e_{hp}$, and $\epsilon = G_{h/2,p+1} - G_{hp}$. Use estimate $|L(e)| = |b(e,\epsilon)| \leq \sum_{K} |b_{K}(e,\epsilon)|$.

Apply the fully automatic hp-adaptive algorithm.

David Pardo

THROUGH CASING RESISTIVITY INSTRUMENTS

Axisymmetric 3D problem.

Five different materials.

Size of computational domain: SEVERAL MILES.

Material properties varying by up to TEN orders of magnitude (1000000000!!!).

Objective: Determine Second Difference of Potential Receiving Electrodes.

Final Log Obtained by Our Finite Element Software

Approximation Error

Imperfect Casing

The University of Texas at Austin

CASING

4-5 Mar 2005

FORMATION

Damaged Casing

In the presence of damaged casing, the use of calibrated instruments is essential.

David Pardo

THROUGH CASING RESISTIVITY INSTRUMENTS

Axisymmetric 3D problem.

Toroid Antennas.

Size of computational domain: SEVERAL MILES.

Different frequencies.

Material properties varying by up to NINE orders of magnitude (1000000000!!!).

Objective:DetermineFirst Difference of Electric andMagnetic Fields.

First Difference of Electric Field at Different Frequencies

Toroid antennas are more sensitive to the rock formation resistivity when located on the borehole's wall

First Difference of Magnetic Field at Different Frequencies

Electromagnetic Fields at Different Frequencies

Electromagnetic Fields are almost constant for frequencies below 1 kHz. A sudden drop in the amplitude occurs at frequencies above 20 kHz.

4-5 Mar 2005

LOGGING INSTRUMENTS WITH A MANDREL

E_{ϕ} (normalized) for a solenoid antenna

Frequency: 2 Mhz

LOGGING INSTRUMENTS WITH A MANDREL

First Difference of E_{ϕ} (normalized) for a solenoid antenna

Frequency: 2 Mhz

LOGGING INSTRUMENTS WITH A MANDREL

First Difference of E_{ϕ} (normalized) for a solenoid antenna

Frequency: 2 Mhz, NO MAGNETIC BUFFER

