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RESISTIVITY LOGGING INSTRUMENTS

Logging Instruments: Definition
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RESISTIVITY LOGGING INSTRUMENTS

Utility of Logging Instruments

OBJECTIVES: To
determine

• Payzones (oil and
gas).

• Amount of oil/gas.

• Ability to extract
oil/gas.

$
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RESISTIVITY LOGGING INSTRUMENTS

Main Objective: To Solve an Inverse Problem

A software for solving the DIRECT problem is essential in order to solve
the INVERSE problem

The University of Texas at Austin
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RESISTIVITY LOGGING INSTRUMENTS

Resistivity Logging Instruments
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RESISTIVITY LOGGING INSTRUMENTS
Final Result Obtained from the Logging Instruments
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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Time Harmonic Maxwell’s Equations:

∇× E = −jωµH

∇× H = (σ + jωε)E + Jimp

Reduced Wave Equation:
E-Formulation H-Formulation

∇×

(

1

µ
∇ × E

)

−(ω2ε−jωσ)E = −jωJ imp ; ∇×

(

1

σ + jωε
∇ × H

)

+jωµH = ∇×
1

σ + jωε
J imp

Boundary Conditions (BC):

• Perfect Electric Conductor Surface:

n × E = 0 ; n · H = 0

• Idealized Antennas (Impressed Surface Electric Current):

n ×
1

µ
∇× E = −jωJimp

S ; n × H = Jimp
S

The University of Texas at Austin
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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation

The reduced wave equation in Ω,

E-Formulation: ∇ ×

(

1

µ
∇ × E

)

− (ω2ε − jωσ)E = −jωJ imp

H-Formulation: ∇ ×

(

1

σ + jωε
∇ × H

)

+ jωµH = ∇ ×
1

σ + jωε
J imp

Variational formulation:

E-Formulation:



























Find E ∈ HD(curl; Ω) such that:
∫

Ω

1

µ
(∇ × E)(∇ × F̄) dV −

∫

Ω

(ω2ε − jωσ)E · F̄ dV =

−jω

∫

Ω

Jimp · F̄ dV + jω

∫

ΓN

Jimp
S · F̄ dS ∀ F ∈ HD(curl; Ω)

H-Formulation:



























Find H ∈ H̃S + HD(curl; Ω) with J̃imp
S = n × H|S and such that:

∫

Ω

1

σ + jωε
(∇ × H)(∇ × F̄) dV + jω

∫

Ω

µH · F̄ dV =
∫

Ω

∇ × (
1

σ + jωε
Jimp) · F̄ dV ∀ F ∈ HD(curl; Ω)

The University of Texas at Austin
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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation in cylindrical coordinates
Using cylindrical coordinates (ρ, φ, z):

Eφ-Formulation:



























Find Eφ ∈ H̃1

D
(Ω) such that:

∫

Ω

1

µ
(
∂Eφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρEφ)

∂ρ

∂(ρF̄φ)

∂ρ
) dV −

∫

Ω

k2Eφ · F̄φ dV =

−jω

∫

Ω

J imp
φ · F̄φ dV + jω

∫

ΓN

J imp
φ,S · F̄φ dS ∀ Fφ ∈ H̃1

D
(Ω) .

Eρ,z-Formulation:



























Find E = (Eρ, 0, Ez) ∈ H̃D(curl; Ω) such that:
∫

Ω

1

µ
(
∂Eρ

∂z

∂F̄ρ

∂z
+

∂Ez

∂ρ

∂F̄z

∂ρ
) − k2

∫

Ω

EρF̄ρ + EzF̄z dV = −jω

∫

Ω

J imp
ρ

F̄ρ + J imp
z

F̄z dV +

jω

∫

ΓN

J imp
ρ,S F̄ρ + J imp

z,S F̄z dS ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

Hφ-Formulation:































Find Hφ ∈ f1(J
imp
ρ,S , J imp

z,S ) + H̃1

D
(Ω) such that:

∫

Ω

1

σ + jωε
(
∂Hφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρHφ)

∂ρ

∂(ρF̄φ)

∂ρ
) dV − jω

∫

Ω

µHφ · F̄φ dV =

∫

Ω

1

σ + jωε
(
∂J imp

ρ

∂z
−

∂J imp
z

∂ρ
)F̄φdV ∀ Fφ ∈ H̃1

D
(Ω) .

Hρ,z-Formulation:































Find H = Hρ, 0, Hz) ∈ f2(J
imp
φ,S ) + H̃D(curl; Ω) such that:

∫

Ω

1

σ + jωε
(
∂Hρ

∂z

∂F̄ρ

∂z
+

∂Hz

∂ρ

∂F̄z

∂ρ
) − jω

∫

Ω

µ(HρF̄ρ + HzF̄z) dV =

∫

Ω

1

σ + jωε
(
∂Jφ

∂z
F̄ρ +

1

ρ

∂(ρJ imp
φ )

∂ρ
F̄z) dV ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

What does it mean Goal-Oriented Adaptivity?

We consider the following problem:
{

Find Ψ ∈ V such that : MISLEADING!!!!!

b(Ψ, ξ) = f(ξ) ∀ξ ∈ V .

The problem we really want to solve is:
{

Find L(Ψ), where Ψ ∈ V such that :

b(Ψ, ξ) = f(ξ) ∀ξ ∈ V ,

where L(Ψ) is our goal

HP goal-oriented adaptivity consists of
constructing an optimal grid:

arg min
hp:|L(ehp)|≤TOL

Nhp

The University of Texas at Austin
10

High Performance Finite Element Software



David Pardo 4-5 Mar 2005

SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

What does it mean Goal-Oriented Adaptivity?
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o
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SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

What does it mean Goal-Oriented Adaptivity?
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SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):
{

Find L(Ψ), where Ψ ∈ V such that :

b(Ψ, ξ) = f(ξ) ∀ξ ∈ V .

We define residual rhp(ξ) = b(ehp, ξ). We seek for solution G of:
{

Find G ∈ V such that :

r(G) = L(ehp) .

This is necessarily solved if we find the solution of the dual problem:
{

Find G ∈ V such that :

b(Ψ, G) = L(Ψ) ∀Ψ ∈ V .

Notice that L(e) = b(e, G).

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

Mathematical Formulation (Goal-Oriented Adaptivity)

DIRECT PROBLEM DUAL PROBLEM

L(Ψ)=b(Ψ,G)

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED HP-FEM

Algorithm for Goal-Oriented Adaptivity

Solve DIRECT and
DUAL problems on
Grid hp.

−→
Solve DIRECT and
DUAL problems on
Grid h/2, p + 1.

Compute e = eh/2,p+1 − ehp, and ε = Gh/2,p+1 − Ghp.

Use estimate |L(e)| = |b(e, ε)| ≤
∑

K |bK(e, ε)|.

Apply the fully automatic hp-adaptive algorithm.

Solve DIRECT and
DUAL problems on
Grid hp.

−→
Solve DIRECT and
DUAL problems on
Grid h/2, p + 1.

The University of Texas at Austin
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THROUGH CASING RESISTIVITY INSTRUMENTS
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Axisymmetric 3D problem.

Five different materials.

Size of computational domain:
SEVERAL MILES.

Material properties varying by
up to TEN orders of magnitude
(10000000000!!!).

Objective: Determine
Second Difference of Potential
Receiving Electrodes.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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Electrodes at the borehole wall
Exact solution for one layer formation

Resistivity of casing = 10−6 Resistivity of casing = 10−7

The University of Texas at Austin
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THROUGH CASING RESISTIVITY INSTRUMENTS

Approximation Error
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THROUGH CASING RESISTIVITY INSTRUMENTS

Damaged Casing
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THROUGH CASING RESISTIVITY INSTRUMENTS

Damaged Casing
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In the presence
of damaged
casing, the use
of calibrated
instruments is
essential.
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THROUGH CASING RESISTIVITY INSTRUMENTS
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Toroid Antennas.

Size of computational domain:
SEVERAL MILES.

Different frequencies.

Material properties varying by
up to NINE orders of
magnitude (1000000000!!!).

Objective: Determine
First Difference of Electric and
Magnetic Fields.
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THROUGH CASING RESISTIVITY INSTRUMENTS

First Difference of Electric Field at Different Frequencies
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Toroid antennas are more sensitive to the rock formation resistivity when
located on the borehole’s wall
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THROUGH CASING RESISTIVITY INSTRUMENTS

First Difference of Magnetic Field at Different Frequencies
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THROUGH CASING RESISTIVITY INSTRUMENTS

Electromagnetic Fields at Different Frequencies
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Electromagnetic
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most constant
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The University of Texas at Austin
22

High Performance Finite Element Software



David Pardo 4-5 Mar 2005

LOGGING INSTRUMENTS WITH A MANDREL
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LOGGING INSTRUMENTS WITH A MANDREL

Eφ (normalized) for a solenoid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Eφ (normalized) for a solenoid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Eφ (normalized) for a solenoid antenna
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CONCLUSIONS

Conclusions

It is possible to simulate a variety of resistivity logging
instruments by using the self-adaptive goal-oriented hp-FEM.

Future Work

• 3D Implementation

• Multi-Physics (Ex.: Acoustics with Electromagnetics).

Institute for Computational Engineering and Sciences
The University of Texas at Austin
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