Colorado School of Mines Department of Geophysics

2D and 3D High Accuracy Simulations of Resistivity Logging Measurements Using a Self-Adaptive Goal-Oriented *hp* Finite Element Method

D. Pardo, C. Torres-Verdín, L. Demkowicz, C. Michler

Collaborators: M. Paszynski, J. Kurtz

May 5, 2006

Department of Petroleum and Geosystems Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

OVERVIEW

- 1. Motivation: Simulation of Resistivity Logging Instruments.
- 2. Methodology:
 - The hp-Finite Element Method (FEM) Exponential Convergence .
 - Automatic Goal-Oriented Refinements in the Quantity of Interest -.
- 3. 2D Numerical Results:
 - Verification of the Software.
 - Simulation of Resistivity Logging Instruments with Mandrel.
 - Simulation of Resistivity Logging Instruments with Casing.
 - Simulation of Cross-Well Measurements with One Cased Well.
 - Perfectly Matched Layers (PML).
- 4. 3D Numerical Results.
- 5. Conclusions and Future Work (Multi-physics).

RESISTIVITY LOGGING INSTRUMENTS

Logging Instruments: Definition

RESISTIVITY LOGGING INSTRUMENTS

Utility of Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS

Main Objective: To Solve an Inverse Problem

A software for solving the DIRECT problem is essential in order to solve the INVERSE problem

RESISTIVITY LOGGING INSTRUMENTS

Resistivity Logging Instruments

MAXWELL'S EQUATIONS

3D Variational Formulation

Time-Harmonic Maxwell's Equations

$ abla imes \mathrm{H} = (ar{ar{\sigma}} + j\omegaar{ar{\epsilon}})\mathrm{E} + \mathrm{J}^{imp}$	Ampere's law
${f abla} imes { m E} = -j\omegaar{ar{\mu}}{ m H} - { m M}^{imp}$	Faraday's law
${oldsymbol abla} \cdot (ar ar ar ar {ar eta} { m E}) = ho$	Gauss' law of Electricity
$ abla \cdot (ar{ar{\mu}} \mathrm{H}) = 0$	Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathrm{E} \in \mathrm{E}_D + H_D(\mathrm{curl};\Omega)$$
 such that:
 $\int_{\Omega} (\bar{\bar{\mu}}^{-1} \nabla \times \mathrm{E}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV - \int_{\Omega} (\bar{\bar{k}}^2 \mathrm{E}) \cdot \bar{\mathrm{F}} \, dV = -j\omega \int_{\Omega} \mathrm{J}^{imp} \cdot \bar{\mathrm{F}} \, dV$
 $+j\omega \int_{\Gamma_N} \mathrm{J}^{imp}_{\Gamma_N} \cdot \bar{\mathrm{F}}_t \, dS - \int_{\Omega} (\bar{\bar{\mu}}^{-1} \mathrm{M}^{imp}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV \quad \forall \, \mathrm{F} \in H_D(\mathrm{curl};\Omega)$

MAXWELL'S EQUATIONS

2D Variational Formulation (Axi-symmetric Problems)

 E_{ϕ} -Variational Formulation (Azimuthal)

 $\begin{cases} \mathsf{Find} \ E_{\phi} \in E_{\phi,D} + \tilde{H}_{D}^{1}(\Omega) \text{ such that:} \\ \int_{\Omega} (\bar{\mu}_{\rho,z}^{-1} \nabla \times E_{\phi}) \cdot (\nabla \times \bar{F}_{\phi}) \ dV - \int_{\Omega} (\bar{k}_{\phi}^{2} E_{\phi}) \cdot \bar{F}_{\phi} \ dV = -j\omega \int_{\Omega} J_{\phi}^{imp} \ \bar{F}_{\phi} \ dV \\ +j\omega \int_{\Gamma_{N}} J_{\phi,\Gamma_{N}}^{imp} \ \bar{F}_{\phi} \ dS - \int_{\Omega} (\bar{\mu}_{\rho,z}^{-1} \mathcal{M}_{\rho,z}^{imp}) \cdot \bar{F}_{\phi} \ dV \quad \forall \ F_{\phi} \in \tilde{H}_{D}^{1}(\Omega) \end{cases}$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

Find
$$(E_{
ho}, E_z) \in E_D + \tilde{H}_D(\operatorname{curl}; \Omega)$$
 such that:

$$\int_{\Omega} (\bar{\mu}_{\phi}^{-1} \nabla \times E_{\rho,z}) \cdot (\nabla \times \bar{F}_{\rho,z}) \, dV - \int_{\Omega} (\bar{k}_{\rho,z}^{2} E_{\rho,z}) \cdot \bar{F}_{\rho,z} \, dV =$$

$$-j\omega \int_{\Omega} J_{\rho}^{imp} \bar{F}_{\rho} + J_{z}^{imp} \bar{F}_{z} \, dV + j\omega \int_{\Gamma_N} J_{\rho,\Gamma_N}^{imp} \bar{F}_{\rho} + J_{z,\Gamma_N}^{imp} \bar{F}_{z} \, dS$$

$$-\int_{\Omega} (\bar{\mu}_{\phi}^{-1} M_{\phi}^{imp}) \cdot \bar{F}_{\rho,z} \, dV \quad \forall (F_{\rho}, F_{z}) \in \tilde{H}_D(\operatorname{curl}; \Omega)$$

www.ices.utexas.edu/%7Epardo

D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

5 May 2006

MODEL PROBLEMS OF INTEREST

High Performance Finite Element Software

D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

5 May 2006

MODEL PROBLEMS OF INTEREST

Variations due to frequency are small (below 5%)

D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

5 May 2006

MODEL PROBLEMS OF INTEREST

THE *hp*-FINITE ELEMENT METHOD (FEM)

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

Motivation (Goal-Oriented Adaptivity)

Motivation (Goal-Oriented Adaptivity)

E(R)

Test Problem

- Solution decays exponentially. • $\frac{|E(T)|}{|T(T)|} \approx 10^{60}$
- Results using energy-norm adaptivity:
 - Energy-norm error: 0.001%
 - Relative error in the quantity of interest $> 10^{30}$ %.

Motivation (Goal-Oriented Adaptivity)

Test Problem

- Solution decays exponentially. - $\frac{|E(T)|}{2} \approx 10^{60}$
- Results using energy-norm adaptivity:
 - Energy-norm error: 0.001%
 - Relative error in the quantity of interest $> 10^{30}$ %.

Goal-oriented adaptivity is needed

Becker-Rannacher (1995,1996), Rannacher-Stuttmeier (1997), Cirak-Ramm (1998), Paraschivoiu-Patera (1998), Peraire-Patera (1998), Prudhomme-Oden (1999, 2001), Heuveline-Rannacher (2003), Solin-Demkowicz (2004).

E(R)

Motivation (Goal-Oriented Adaptivity)

Goal-oriented adaptivity is needed

www.ices.utexas.edu/%7Epardo

Mathematical Formulation (Goal-Oriented Adaptivity)

Let's L be the quantity of interest (Ex.: first vertical difference of electric field).

We consider the following problem (in variational form):

 $\left\{ egin{array}{ll} {\sf Find} \ L(\Psi), {\sf where} \ \Psi \in V {
m ~such ~that}: \ b(\Psi,\xi) = f(\xi) & orall \xi \in V \ . \end{array}
ight.$

We define residual $r_e(\xi) = b(e, \xi)$. We seek for solution *G* of:

 $\left\{ egin{array}{ll} {\sf Find} \ G \in V'' \sim V \ {\sf such \ that}: \ G(r_e) = L(e) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{l} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(\Psi,G)=L(\Psi) \quad orall \Psi\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

Mathematical Formulation (Goal-Oriented Adaptivity)

DIRECT PROBLEM - Ψ - 2D Cross-Section

DUAL PROBLEM - G -2D Cross-Section

Representation Formula for the Error in the Quantity of Interest: $L(\Psi)=b(\Psi,G) = \int_{\Omega} \sigma \nabla \Psi \nabla G dV \text{ (electrostatics)}$

Algorithm for Goal-Oriented Adaptivity - STEP I -

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP II -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP III -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP IV -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

2D hp-FEM: NUMERICAL RESULTS

Type of Problems We Can Solve with 2Dhp90

Physical Devices	Magnetic Buffers	Insulators	Displacement Currents
	Casing	Casing Imperfections	Combination of all
Materials	Isotropic	Anisotropic*	
Sources	Toroidal Antennas	Solenoidal Antennas	Dipoles in Any Direction
	Electrodes	Finite Size Antennas	Combination of All
Logging Instruments	LWD/MWD	Laterolog	Normal
	Induction	Dielectric Instruments	Cross-well
Frequency	0-10 Ghz.		
Invasion	Water	Oil	etc.

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with a mandrel.
- 3. Exact solution in a homogeneous media with casing.

• Comparison Against Semi-Analytical 1D Codes.

- 1. Comparison against 1D 'radial' code.
- 2. Comparison against 1D 'hybrid' code.

• Comparison Against 2D Codes.

- 1. Comparison against a 2D FE code (Dr. Wei Yang).
- 2. Comparison between continuous elements vs. edge elements.
- Verification of Physical Properties.
 - 1. Reciprocity principle.
 - 2. Discrete divergence free approximation for edge elements.
 - 3. Sensitivity with respect to different size of domain and antennas.

• Built-in Numerical Verifications.

- 1. Error control provided by the fine grid.
- 2. Comparison between continuous elements vs. edge elements.

2D hp-FEM: VERIFICATION OF RESULTS

Validation against a 1D 'hybrid' code (G. L. Wang)

Comparison Against Analytical Solutions

Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz)Solenoid AntennaToroid Antenna

Comparison Against Analytical Solutions

Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz) in Presence of a Conductive Mandrel

Solenoid Antenna

Toroid Antenna

Magnetic Field

2D hp-FEM: INDUCTION INSTRUMENTS

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m

2D hp-FEM: INDUCTION INSTRUMENTS

Goal-Oriented vs. Energy-norm *hp***-Adaptivity**

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

2D hp-FEM: INDUCTION INSTRUMENTS

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (Quadrilateral Elements)

2D hp-FEM: INDUCTION INSTRUMENTS

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

First Vert. Diff. H_{ϕ} for different antennas

In LWD instruments, we obtain similar results using toroids or a ring of vert. dipoles

www.ices.utexas.edu/%7Epardo

2D hp-FEM: INDUCTION INSTRUMENTS

First Vert. Diff. E_z for a toroid antenna

Toroids are adequate for identifying highly resistive layers
First Vert. Diff. E_{ϕ} for a solenoid antenna

Solenoids are adequate for identifying low resistive layers

Use of Magnetic Buffers (E_{ϕ} for a solenoid)

Use of magnetic buffers strengthen the signal in combination with solenoids

www.ices.utexas.edu/%7Epardo

37

Use of Magnetic Buffers (H_{ϕ} for a toroid)

However, magnetic buffers weaken the signal in combination with toroids

Large invasion effects can be sensed using solenoids

Invasion study (H_{ϕ} for a toroid)

Small invasion effects can be sensed using toroids

Invasion in resistive layers cannot be sensed using solenoids

Invasion study (H_{ϕ} for a toroid)

Invasion in resistive layers should be studied using toroids

Invasion and mandrel magnetic permeab. (E_{ϕ})

The effect of magnetic permeability on the mandrel is similar to the effect of magnetic buffers

Anisotropy (H_{ϕ})

Anisotropy effects may be important when studying resistive layers

D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

2D hp-FEM: THROUGH CASING INSTRUMENTS

Variations due to frequency are small (below 5%)

Water invasion through casing can be accurately assessed

Water invasion through casing can be accurately assessed

Water invasion through casing can be accurately assessed

D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

2D hp-FEM: THROUGH CASING INSTRUMENTS

Variations due to frequency are small (below 5%)

Variations due to water ivasion are large

Variations due to water ivasion are large

Variations due to water ivasion are large

Casing resistivity can be analyzed from different frequency measurements

www.ices.utexas.edu/%7Epardo

55

Study of anisotropy and frequency effects require from high accuracy simulations

Variations due to invasion are below 20%.

5.5" Borehole radio ; 0.5" Casing ; 2" Cement

A Cross-Well Study with One Cased Well: Toroid Antennas

A Cross-Well Study: Vertical Dipoles

A Cross-Well Study: Horizontal Dipoles

www.ices.utexas.edu/%7Epardo

63

A Cross-Well Study: Different Antennas

A Cross-Well Study: Toroid Antennas (Outside Borehole)

5 May 2006

A Cross-Well Study: Vertical Dipoles (Outside Borehole)

A Cross-Well Study: Horizontal Dipoles (Outside Borehole)

www.ices.utexas.edu/%7Epardo

67

A Cross-Well Study: Different Antennas (Outside Borehole)

A Cross-Well Study: Antennas Inside and Outside Borehole

A Cross-Well Study: Receivers at 500 m (Horizontal Distance)

5 May 2006

A Cross-Well Study: First Vertical Diff. of Magnetic Field

A Cross-Well Study: First Vert. Diff. Magnetic Field (50 m)

A Cross-Well Study: Water Invasion with Toroids (50 m - E_z -)

74

A Cross-Well Study: Water Invasion with Toroids (250 m)

A Cross-Well Study: Water Invasion, Vert. Dipoles (250 m)

A Cross-Well Study: Water Invasion, Horiz. Dipoles (250 m)

A Cross-Well Study: Water Invasion, Toroid (50 m)

A Cross-Well Study: Water Invasion, Vert. Dipoles (50 m)

A Cross-Well Study: Water Invasion, Horiz. Dipoles (50 m)

www.ices.utexas.edu/%7Epardo

A Cross-Well Study: Magnetic Perm., Toroid (250 m)

A Cross-Well Study: Magnetic Perm., Vert. Dipoles (250 m)

A Cross-Well Study: Magnetic Perm., Horiz. Dipoles (250 m)

A Cross-Well Study: Magnetic Perm., Horiz. Dipoles (250 m)

A Cross-Well Study: Distance Dependance at 1 Hz

A Cross-Well Study with One Cased Well: Vertical Dipoles

A Cross-Well Study with One Cased Well: Vertical Dipoles

A Cross-Well Study with One Cased Well: Vertical Dipoles

Perfectly Matched Layer (PML) Formulation

The PML is composed of the following anisotropic materials:

$$egin{aligned} &ar{ar{\sigma}}_{PML} = ar{ar{\Lambda}}ar{ar{\sigma}} & & \ ar{ar{\sigma}}_{PML} = ar{ar{\Lambda}}ar{ar{ar{\sigma}}} & ; & ar{ar{\Lambda}} = egin{bmatrix} &ar{ar{
ho}}s_z & s_
ho & 0 & 0 & \ &ar{
ho}s_
ho & s_
ho & \rho & s_
ho & 0 & \ &0 & ar{ar{
ho}}s_z s_
ho & 0 & 0 & \ &0 & ar{ar{
ho}}s_z s_
ho & 0 & 0 & \ &0 & 0 & ar{ar{
ho}}s_z & s_
ho & 0 & \ &0 & 0 & ar{ar{
ho}}s_z & s_
ho & \ &0 & 0 & ar{ar{
ho}}s_z & s_
ho & \ &0 & 0 & ar{ar{
ho}}s_z & s_
ho & \ &0 & 0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &0 & \ &0 & ar{ar{
ho}}s_z & \ &0 & \ &$$

 s_{ρ} , s_{ϕ} , and s_z are the stretching coordinate functions. We define:

$$s_{
ho}=s_{\phi}=s_{z}=1+\phi-j\phi$$

We consider three different PML's by defining three different functions $\phi(x)$:

$$\phi(x) = \left\{ egin{array}{ll} \phi_1(x) = \left[2(rac{x-x_0}{x_1-x_0})
ight]^{17} & {\sf PML} \ 1, \ \phi_2(x) = 20000 \left(rac{x-x_0}{x_1-x_0}
ight) & {\sf PML} \ 2, & x \in (x_0,x_1) \ \phi_3(x) = 10000 & {\sf PML} \ 3. \end{array}
ight.$$

Within the PML, both propagating and evanescent waves become arbitrarely fast evanescent waves.

www.ices.utexas.edu/%7Epardo

Axisymmetric 3D problem.

Six different materials.

Through casing resistivity instrument.

Final hp-Grid with a 0.5 m Thick PML.

PMLs provide accurate solutions without reflections from the boundary

www.ices.utexas.edu/%7Epardo

93

If we compute the phase, a computational domain of 3200 m x 800 m is not large enough.

2D hp-FEM: MULTI-PHYSICS (ACOUSTICS)

A PML is utilized to truncate the computational domain

www.ices.utexas.edu/%7Epardo

2D hp-FEM: MULTI-PHYSICS (ELASTICITY)

Linear Elasticity. Pressure Applied Along the Circumference. Poisson Ratio=0.3 ; Young Modulus = 4 (top part) and 1 (bottom part) ; Freq.=22.4 Khz

$$\int_\Omega ar{E}_{ijkl} u_{k,l} v_{i,j} \ dx - \omega^2 \int_\Omega ar{
ho} u_i v_i \ dx = \int_{\Gamma_N} g_i v_i \ dS, \quad orall v \in ar{V}$$

Solution (Real Part) Solution (Imag. Part) (< 1% error) Final hp-grid

A PML is utilized to truncate the computational domain

5 May 2006

3D hp-FEM: NUMERICAL RESULTS

Electrode Problem

Electrode Problem

Final *hp*-grid

Final solution

2D Solution: 0.078131

3D Solution: 0.078121

Resources Needed by the Adaptive Algorithm

Electrode Problem

- The adaptive algorithm utilizes about half of the time used by the solver MUMPS.
- The amount of memory used by the adaptive algorithm is negligible, and results are not reported here.
- Since the final result is given by the final fine-grid solution, the adaptive algorithm does NOT need to be executed on the last iteration.
- For multiple logging instrument positions, the optimal grid may be reutilized without employing the adaptive algorithm.

Resources needed by the adaptive algorithm are between 4% and 25% of the total resources needed by the 3D code (if MUMPS is used).

Axisymmetric Model Problem

• Borehole and four materials on the formation.

• Size of computational domain: $100m \times 100m$.

- Size of electrode: $0.05m \times 0.05m$.
- Objective: Compute
 First Vertical
 Difference of
 Potential.

Axisymmetric Model Problem

5 May 2006

Equation: $-\Delta u = 0$ Boundary Conditions: Neumann, Dirichlet

Solution of Direct Problem

Solution of Dual Problem

www.ices.utexas.edu/%7Epardo

 x^{z}

5 May 2006

www.ices.utexas.edu/%7Epardo

103

Exponential Convergence in the Quantity of Interest

www.ices.utexas.edu/%7Epardo

CONCLUSIONS AND FUTURE WORK

- The self-adaptive goal-oriented *hp*-adaptive strategy converges exponentially in terms of a user-prescribed quantity of interest vs. the CPU time.
- We obtain fast, reliable and accurate solutions for problems with a large dynamic range and high material constrasts.
- We obtain meanigful physical conclusions useful for instrument modeling and for assessment of petrophysical properties.

Work in Progress

- To further develop the parallel version of the 3D hp-FE code as well as a multigrid solver.
- To apply the self-adaptive goal-oriented *hp*-FEM for inversion of 2D multi-physic problems.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) D. Pardo, C. Torres-Verdin, L. Demkowicz, C. Michler

5 May 2006

www.ices.utexas.edu/%7Epardo

ES: CHARACTERISTICS 2DHP90 and 3DHP90

2Dhp90, 3Dhp90: main features

- Isoparametric triangles, squares and hexahedras.
- H^1 and H(curl) dofs.
- Isotropic and anisotropic mesh refinements.
- Geometrical Modeling Package (GMP).
- New data structure in Fortran 90.
- Constrained information reconstructed (not stored).
- Two levels of logical operations:
 - 1. operations for nodes problem independent.
 - 2. operations for nodal dof problem dependent.
- Fully automatic *hp*-adaptive strategy.

-provides exponential convergence rates-
ES: KAUFMAN's APPROX. FORMULAS

Logging Through Casing (Benchmark Problem) Rock Formation: Homogeneous Media

The second vertical difference of the Electric Potential is proportional to the formation conductivity.