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me, myself, and I

Professional Career of David Pardo

Univ. of the Basque Country.
Bachelors in Applied Mathematics
Acquired Basic Knowledge in Mathematics.
4 years (1996-2000).

ICES, UT Austin.
Ph.D. in Computational and Applied Mathematics
Acquired Expertise in Computer Simulations.
4 years (2000-2004).

Petroleum Engineering, UT Austin.
Postdoctoral Fellow and Research Associate in Engineering.
Simulated Real-World Engineering (Oil-Industry) Problems.
4 years (2004-2008).

BCAM.
Research Professor in Applied Mathematics.
Coordinate a Research Team in Computer Based Simulations.
8 years (2008-2015).
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motivation and objectives

Seismic Measurements

Figure from the USGS Science Center for Coastal and Marine Geol ogy
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motivation and objectives

Marine Controlled-Source Electromagnetics (CSEM)

Figure from the UCSD Institute of Oceanography
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motivation and objectives
Multiphysics Logging Measurements

OBJECTIVES: To determine payzones ( porosity ), amount of oil/gas
(saturation ), and ability to extract oil/gas ( permeability ).
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motivation and objectives

Joint Multiphysics Inversion (Medical Application)

Detection of breast cancer using an ecography vs. MRI.
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main challenges

• Mathematical challenges:

– Inverse problems are non-unique and ill-posed.

– Stability and convergence properties of some multiphysics couplings may be
unknown.

– Choice of multiphysic couplings may affect performance.

– Solutions corresponding to different physical phenomena may live in different
spaces.

• Physical challenges:

– Multiphysics couplings are possibly unknown/uncertain.

– Possibly complex non-linearities and/or time-dependant phenomena.

• Engineering challenges:

– We need goal-oriented algorithms, automatic grid generation/refinements
(mesh-based methods), validation and verification (reliability).

• Computer sciences challenges:

– There is a need for 3D computations (complex geometries, CPU time and memory
consumption), parallelization, visualization, and efficient algorithms.
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state-of-the- art

Available Commercial Software:

• COMSOL (structural, thermal,
electromagnetics, chemichal, acoustics, heat
transfer, etc.).

• ANSYS multiphysics (structural, thermal,
fluid and electromagnetism).

• CFD-ACE+ (flow, heat transfer and
turbulence) and CFD-FASTRAN (aerodynamic
and aerothermodynamic).

• Other such as FlexPDE, LS-DYNA, NEi
Nastran, IDC-SAC, OOFELIE, etc.

COMSOL

ANSYS Multiphysics

A large amount of commercial and non-commercial software for so lving
multiphysics problems has been generated during the last decad e.
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method: hp f inite element method

The h-Finite Element Method
1. Convergence limited by the polynomial degree, and large material

contrasts.

2. Optimal h-grids do NOT converge exponentially in real applications.

3. They may “lock” (100 % error).

The p-Finite Element Method
1. Exponential convergence feasible for analytical (“nice”) solutions.

2. Optimal p-grids do NOT converge exponentially in real applications.

3. If initial h-grid is not adequate, the p-method will fail miserably.

The hp-Finite Element Method
1. Exponential convergence feasible for ALL solutions.

2. Optimal hp -grids DO converge exponentially in real applications.

3. If initial hp -grid is not adequate, results will still be great.
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method: hp g oal-oriented adaptivity and solver
Goal-Oriented Adaptivity (solve the adjoint problem, and use the

representation theorem of the quantity of interest L( Ψ))

CONTRIBUTION TO L(Ψ)
- COARSE GRID -


y


CONTRIBUTION TO L(Ψ)
- FINE GRID -


y
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method: hp g oal-oriented adaptivity and solver
Goal-Oriented Adaptivity (solve the adjoint problem, and use the

representation theorem of the quantity of interest L( e))

CONTRIBUTION TO L(e)


y


CONTRIBUTION IN ABS VALUE TO L(e)


y
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method: Fourier finite element method

Non-Orthogonal System of Coordinates

Z
Z~

ζ1

6

ζ3

ζ2

Fourier Series Expansion in ζ2

DC Problems: −∇σ∇u = f

u(ζ1, ζ2, ζ3) =
l=∞
∑

l=−∞

ul(ζ1, ζ3)e
jlζ2

σ(ζ1, ζ2, ζ3) =
m=∞
∑

m=−∞

σm(ζ1, ζ3)e
jmζ2

f(ζ1, ζ2, ζ3) =
n=∞
∑

n=−∞

fn(ζ1, ζ3)e
jnζ2

Fourier modes ejlζ2 are orthogonal
high-order basis functions that are
(almost) invariant with respect to
the gradient operator.
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method: de Rham diagram

De Rham diagram

De Rham diagram is critical to the theory of FE discretizations of
multi-physics problems.

IR −→ W
∇

−→ Q
∇×
−→ V

∇◦
−→ L2

−→ 0




yid





yΠ




yΠcurl





yΠdiv





yP

IR −→ W p ∇
−→ Qp ∇×

−→ Vp ∇◦
−→ W p−1

−→ 0 .

This diagram relates two exact sequences of spaces, on both conti nuous
and discrete levels, and corresponding interpolation operator s.
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method: paralellization

We Use Shared Domain Decomposition
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numerical results: electromagnetic applications

DLL Tool
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numerical results: electromagnetic applications
Groningen Effect
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B: at  ρ = 1 m, 1 m below the surface

Comparison of Groningen Effects on LLd at 100 Hz
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Comparison of Groningen Effects on LLd at 100 Hz
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As we place the current return electrode B farther from the logging
instrument, the Groningen effect diminishes
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numerical results: electromagnetic applications
DC DLL in Deviated Wells
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Anisotropic Formation (Vertical Well)
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LLd: Iso
LLd: Ani
LLs: Iso
LLs: Ani
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Anisotropic Formation (60−degree Deviated Well)
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Anisotropy is better identified when using deviated wells
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numerical results: acoustic applications

Final hp-grid and solution

8 KHz, acoustics , open borehole setting (no logging instrument).
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conclusions: team and collaborations

I. Garay

Development of algorithms for solving
multiphysics inverse problems.

Development of fast
iterative solvers.

F. de la Hoz

M. Paszynski

Parallel computations.

Simulations of resistivity
logging instruments.

M.J. Nam
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conclusions: team and collaborations

L.E. Garcı́a-Castillo

Electromagnetic computations.

Visualization.

E. Pérez

I. Gómez

Three-dimensional computations.

Contacts with the
oil industry.

C. Torres- Verdı́n
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conclusions

• We have recently created a research team working on
advanced numerical analysis and computer based
simulations of different physical phenomena.

• We are expanding our team to a size of 6-8 members to deal
with more complex multi-phsyics problems. For that
purpose, we are now looking for reserchers (Ph.D. students,
and postdoctoral fellows).

• We are interested in solving multi-physics problems, invers e
and optimization problems, and simulation problems with
real-world applications.

• We are interested in collaborations with different researc h
centers. For that purpose, we typically identify projects
where all collaborators have an expertise on a particular
area of the project to be developed.
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