ADMOS 2009

A HP Fourier-Finite-Element Framework with Multiphysics Applications

D. Pardo, M. J. Nam, C. Torres-Verdín

Research Professor at BCAM

Team: D. Pardo, M. J. Nam, V. Calo, L.E. García-Castillo, M. Paszynski, P. Matuszyk, L. Demkowicz, C. Torres-Verdín

May 27th, 2009

(bcam)

overview

- 1. Motivation and Objectives: Joint Multiphysics Inversion.
- 2. Method:
 - Parallel Self-Adaptive Goal-Oriented hp Fourier Finite Element Method.
 - De Rham Diagram.
 - Electromagnetic and Sonic Applications.
- 3. Conclusions.
- 4. Future Work.

For additional info, visit: www.bcamath.org/pardo

motivation and objectives

Multiphysics Logging Measurements

OBJECTIVES: To determine payzones (porosity), amount of oil/gas (saturation), and ability to extract oil/gas (permeability).

(bcam)

For additional info, visit: www.bcamath.org/pardo

motivation and objectives

Main Objective: To Solve a Multiphysics Inverse Problem

For additional info, visit: www.bcamath.org/pardo

hp finite element method

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- **2.** Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

For additional info, visit: www.bcamath.org/pardo

hp adaptivity

For additional info, visit: www.bcamath.org/pardo

hp goal oriented adaptivity

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

 $\left\{ egin{array}{ll} {\sf Find} \ L(\Psi), {\sf where} \ \Psi \in V {
m ~such ~that}: \ b(\Psi,\xi) = f(\xi) & orall \xi \in V {
m ~.} \end{array}
ight.$

We define residual $r_e(\xi) = b(e, \xi)$. We seek for solution *G* of:

 $\left\{ egin{array}{l} {\sf Find} \ G \in V'' \sim V \ {\sf such \ that}: \ G(r_e) = L(e) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{ll} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(\Psi,G)=L(\Psi) \quad orall \Psi\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

hp goal oriented adaptivity

For additional info, visit: www.bcamath.org/pardo

Fourier finite element method

Fourier Series Expansion in ζ_2

$$egin{aligned} \mathsf{DC Problems:} & -
abla \sigma
abla u(\zeta_1, \zeta_2, \zeta_3) = \sum\limits_{l=-\infty}^{l=\infty} u_l(\zeta_1, \zeta_3) e^{j l \zeta_2} \ \sigma(\zeta_1, \zeta_2, \zeta_3) = \sum\limits_{m=-\infty}^{m=\infty} \sigma_m(\zeta_1, \zeta_3) e^{j m \zeta_2} \ f(\zeta_1, \zeta_2, \zeta_3) = \sum\limits_{n=-\infty}^{n=\infty} f_n(\zeta_1, \zeta_3) e^{j n \zeta_2} \end{aligned}$$

Fourier modes $e^{jl\zeta_2}$ are orthogonal high-order basis functions that are (almost) invariant with respect to the gradient operator.

> www.bcamath.org basque center for applied mathematics

(bcam)

For additional info, visit: www.bcamath.org/pardo

de Rham diagram

De Rham diagram

De Rham diagram is critical to the theory of FE discretizations of multi-physics problems.

This diagram relates two exact sequences of spaces, on both continuous and discrete levels, and corresponding interpolation operators.

www.bcamath.org

(bcam)

For additional info, visit: www.bcamath.org/pardo

For additional info, visit: www.bcamath.org/pardo

electromagnetic applications

Groningen Effect

www.bcamath.org

(bcam)

electromagnetic applications

www.bcamath.org basque center for applied mathematics

16

For additional info, visit: www.bcamath.org/pardo

acoustic applications

Final *hp*-grid and solution

For additional info, visit: www.bcamath.org/pardo

conclusions

- We have described an efficient numerical method for solving PDE's based on a self-adaptive goal-oriented *hp* refinement strategy.
- We are developing a multiphysics version of the code using the *de Rham* diagram.
- Our main objective is to create a software infrastructure enabling solution of challenging multiphysics inverse problems with applications to geophysics (hydrocarbon detection and monitoring, etc.), aeronautics and medicine.
- To achieve this objective, we need Ph.D. students, post-doctoral fellows, experienced researchers, and collaborators in different areas (inversion, solvers, etc).

For additional info, visit: www.bcamath.org/pardo

future work

Development of algorithms for solving multiphysics inverse problems.

Development of fast iterative solvers.

M. Paszynski

(bcam)

Parallel computations.

Simulations of resistivity logging instruments.

www.bcamath.org basque center for applied mathematics

For additional info, visit: www.bcamath.org/pardo

future work

Electromagnetic computations.

Visualization.

C. Torres-Verdín

I. Gómez

(bcam)

Three-dimensional computations.

Contacts with the oil industry.

