MAFELAP 2006

High Accuracy Simulations of 2D and 3D Resistivity Logging Instruments Using a Self-Adaptive Goal-Oriented *hp*-FEM

David Pardo (dzubiaur@gmail.com), M. Paszynski, C. Torres-Verdin, L. Demkowicz

Collaborators: J. Kurtz, L.E. Garcia-Castillo, C. Michler

Brunel University, Uxbridge, England June 14, 2006

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

THE UNIVERSITY OF TEXAS AT AUSTIN

OVERVIEW

- 1. Motivation: Simulation of Resistivity Logging Instruments.
- 2. Maxwell's Equationns.
- 3. Methodology:
 - The *hp*-Finite Element Method (FEM) Exponential Convergence -.
 - Automatic Goal-Oriented Refinements in the Quantity of Interest -.
 - Perfectly Matched Layers (PML).
- 4. Numerical Results:
 - Simulation of 2D Resistivity Logging Instruments.
 - Simulation of 3D Resistivity Logging Instruments.
- 5. Conclusions and Future Work.

RESISTIVITY LOGGING INSTRUMENTS

Logging Instruments: Definition

RESISTIVITY LOGGING INSTRUMENTS

Utility of Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS

Main Objective: To Solve an Inverse Problem

A software for solving the DIRECT problem is essential in order to solve the INVERSE problem

RESISTIVITY LOGGING INSTRUMENTS

Resistivity Logging Instruments

MAXWELL'S EQUATIONS

3D Variational Formulation

Time-Harmonic Maxwell's Equations

$ abla imes \mathrm{H} = (ar{ar{\sigma}} + j\omegaar{ar{\epsilon}})\mathrm{E} + \mathrm{J}^{imp}$	Ampere's law
$ abla imes \mathrm{E} = -j\omegaar{ar{\mu}}\mathrm{H} - \mathrm{M}^{imp}$	Faraday's law
${oldsymbol abla} \cdot (ar{ar \epsilon} \mathrm{E}) = ho$	Gauss' law of Electricity
$ abla \cdot (ar{ar{\mu}} \mathrm{H}) = 0$	Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathrm{E} \in \mathrm{E}_D + H_D(\mathrm{curl};\Omega)$$
 such that:
 $\int_{\Omega} (\bar{\bar{\mu}}^{-1} \nabla \times \mathrm{E}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV - \int_{\Omega} (\bar{\bar{k}}^2 \mathrm{E}) \cdot \bar{\mathrm{F}} \, dV = -j\omega \int_{\Omega} \mathrm{J}^{imp} \cdot \bar{\mathrm{F}} \, dV$
 $+j\omega \int_{\Gamma_N} \mathrm{J}^{imp}_{\Gamma_N} \cdot \bar{\mathrm{F}}_t \, dS - \int_{\Omega} (\bar{\bar{\mu}}^{-1} \mathrm{M}^{imp}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV \quad \forall \, \mathrm{F} \in H_D(\mathrm{curl};\Omega)$

MAXWELL'S EQUATIONS

2D Variational Formulation (Axi-symmetric Problems)

 E_{ϕ} -Variational Formulation (Azimuthal)

 $\begin{cases} \mathsf{Find} \ E_{\phi} \in E_{\phi,D} + \tilde{H}_{D}^{1}(\Omega) \text{ such that:} \\ \int_{\Omega} (\bar{\mu}_{\rho,z}^{-1} \nabla \times E_{\phi}) \cdot (\nabla \times \bar{F}_{\phi}) \ dV - \int_{\Omega} (\bar{k}_{\phi}^{2} E_{\phi}) \cdot \bar{F}_{\phi} \ dV = -j\omega \int_{\Omega} J_{\phi}^{imp} \ \bar{F}_{\phi} \ dV \\ +j\omega \int_{\Gamma_{N}} J_{\phi,\Gamma_{N}}^{imp} \ \bar{F}_{\phi} \ dS - \int_{\Omega} (\bar{\mu}_{\rho,z}^{-1} \mathcal{M}_{\rho,z}^{imp}) \cdot \bar{F}_{\phi} \ dV \quad \forall \ F_{\phi} \in \tilde{H}_{D}^{1}(\Omega) \end{cases}$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

Find
$$(E_{
ho}, E_z) \in E_D + \tilde{H}_D(\operatorname{curl}; \Omega)$$
 such that:

$$\int_{\Omega} (\bar{\mu}_{\phi}^{-1} \nabla \times E_{\rho,z}) \cdot (\nabla \times \bar{F}_{\rho,z}) \, dV - \int_{\Omega} (\bar{k}_{\rho,z}^{2} E_{\rho,z}) \cdot \bar{F}_{\rho,z} \, dV =$$

$$-j\omega \int_{\Omega} J_{\rho}^{imp} \bar{F}_{\rho} + J_{z}^{imp} \bar{F}_{z} \, dV + j\omega \int_{\Gamma_N} J_{\rho,\Gamma_N}^{imp} \bar{F}_{\rho} + J_{z,\Gamma_N}^{imp} \bar{F}_{z} \, dS$$

$$-\int_{\Omega} (\bar{\mu}_{\phi}^{-1} M_{\phi}^{imp}) \cdot \bar{F}_{\rho,z} \, dV \quad \forall (F_{\rho}, F_{z}) \in \tilde{H}_D(\operatorname{curl}; \Omega)$$

www.ices.utexas.edu/%7Epardo

D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz

14 Jun 2006

MODEL PROBLEMS OF INTEREST

High Performance Finite Element Software

MODEL PROBLEMS OF INTEREST

Variations due to frequency are small (below 5%)

THE *hp*-FINITE ELEMENT METHOD (FEM)

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- 1. Exponential convergence feasible for ALL solutions.
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

GOAL-ORIENTED ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

Let's L be the quantity of interest (Ex.: first vertical difference of electric field).

We consider the following problem (in variational form):

 $\left\{ egin{array}{ll} {\sf Find} \ L(\Psi), {\sf where} \ \Psi \in V {
m ~such ~that}: \ b(\Psi,\xi) = f(\xi) & orall \xi \in V \ . \end{array}
ight.$

We define residual $r_e(\xi) = b(e, \xi)$. We seek for solution G of:

 $\left\{ egin{array}{l} {\sf Find} \ G \in V'' \sim V \ {\sf such \ that}: \ G(r_e) = L(e) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{l} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(\Psi,G)=L(\Psi) \quad orall \Psi\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

GOAL-ORIENTED ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

DIRECT PROBLEM - Ψ - 2D Cross-Section

DUAL PROBLEM - G -2D Cross-Section

Representation Formula for the Error in the Quantity of Interest:

 $\mathsf{L}(\Psi)=\mathsf{b}(\Psi,\mathsf{G})=\int_{\Omega}\sigma\;\nabla\Psi\;\nabla GdV$

GOAL-ORIENTED ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

We define:
$$e = \Psi - \Psi_{hp}$$
,
 $\epsilon = G - G_{hp}$.

 Ψ exact solution of direct problem G exact solution of dual problem

Upper Bound for the Error in the Quantity of Interest:

$$egin{aligned} |L(e)| &= |b(e,G)| = |\int_\Omega \sigma \
abla e \$$

Algorithm for Goal-Oriented Adaptivity - STEP I -

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP II -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP III -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP IV -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz

14 Jun 2006

2D hp-FEM: NUMERICAL RESULTS

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m

Goal-Oriented vs. Energy-norm *hp***-Adaptivity**

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (Quadrilateral Elements)

2D hp-FEM: NUMERICAL RESULTS

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

2D hp-FEM: NUMERICAL RESULTS

First Vert. Diff. H_{ϕ} for different antennas

In LWD instruments, we obtain similar results using toroids or a ring of vert. dipoles

www.ices.utexas.edu/%7Epardo

First Vert. Diff. E_z for a toroid antenna

Toroids are adequate for identifying highly resistive layers

First Vert. Diff. E_{ϕ} for a solenoid antenna

Solenoids are adequate for identifying low resistive layers

Use of Magnetic Buffers (E_{ϕ} for a solenoid)

Use of magnetic buffers strengthen the signal in combination with solenoids

www.ices.utexas.edu/%7Epardo

Use of Magnetic Buffers (H_{ϕ} for a toroid)

However, magnetic buffers weaken the signal in combination with toroids

Invasion study (E_{ϕ} for a solenoid)

Large invasion effects can be sensed using solenoids

2D hp-FEM: NUMERICAL RESULTS

Invasion study (H_{ϕ} for a toroid)

Small invasion effects can be sensed using toroids

Invasion study (E_{ϕ} for a solenoid)

Invasion in resistive layers cannot be sensed using solenoids

2D hp-FEM: NUMERICAL RESULTS

Invasion study (H_{ϕ} for a toroid)

Invasion in resistive layers should be studied using toroids

Invasion and mandrel magnetic permeab. (E_{ϕ})

The effect of magnetic permeability on the mandrel is similar to the effect of magnetic buffers

www.ices.utexas.edu/%7Epardo

2D hp-FEM: NUMERICAL RESULTS

Anisotropy (H_{ϕ})

Anisotropy effects may be important when studying resistive layers

www.ices.utexas.edu/%7Epardo

PERFECTLY MATCHED LAYER (PML)

Perfectly Matched Layer (PML) Formulation

The PML is composed of the following anisotropic materials:

 s_{ρ} , s_{ϕ} , and s_z are the stretching coordinate functions. We define:

$$s_{
ho}=s_{\phi}=s_{z}=1+\phi-j\phi$$

We consider three different PML's by defining three different functions $\phi(x)$:

$$\phi(x) = \left\{ egin{array}{ll} \phi_1(x) = \left[2(rac{x-x_0}{x_1-x_0})
ight]^{17} & {\sf PML} \ 1, \ \phi_2(x) = 20000 \left(rac{x-x_0}{x_1-x_0}
ight) & {\sf PML} \ 2, & x \in (x_0,x_1) \ \phi_3(x) = 10000 & {\sf PML} \ 3. \end{array}
ight.$$

Within the PML, both propagating and evanescent waves become arbitrarely fast evanescent waves.

PERFECTLY MATCHED LAYER (PML)

Axisymmetric 3D problem.

Six different materials.

Through casing resistivity instrument.

Varying coefficients by up to 10 orders of magnitude.

Final hp-Grid with a 0.5 m Thick PML.

PERFECTLY MATCHED LAYER (PML)

PMLs provide accurate solutions without reflections from the boundary

www.ices.utexas.edu/%7Epardo

PERFECTLY MATCHED LAYER (PML)

Number of unknowns employed by the self-adaptive goal-oriented hp-FE method as a function of the size of computational domain and presence of a PML

Domain Size (m)	Nr. Unknowns	Nr. Unknowns
	($pprox 1\%$ error)	($pprox 0.01\%$ error)
PML 1 (5 x 2.5)	19541 (0.083%)	24886 (0.037%)
PML 2 (5 x 2.5)	7095 (0.29%)	13345 (0.006%)
PML 3 (5 x 2.5)	8679 (1.04%)	19640 (0.009%)
6400 x 1600	12327 (0.43%)	18850 (0.014%)
12800 x 3200	12964 (0.43%)	18892 (0.014%)
25600 x 6400	12099 (1.22%)	19828 (0.037%)

PML 2 provides considerable savings

www.ices.utexas.edu/%7Epardo

3D hp-FEM: NUMERICAL RESULTS (DC)

Electrode Problem

Electrode Problem

Final *hp*-grid

Final solution

14 Jun 2006

2D Solution: 0.078131

3D Solution: 0.078121

• Borehole and four materials on the formation.

• Size of computational domain: $100m \times 100m$.

- Size of electrode: $0.05m \times 0.05m$.
- Objective: Compute
 First Vertical
 Difference of
 Potential.

Axisymmetric Model Problem

3D hp-FEM: NUMERICAL RESULTS (DC)

Axisymmetric Model Problem

5000 7000 ---Two grid (iterative) solver - Time used by adaptivity -MUMPS (direct) solver ---Time used by TG (iterative) solver 4500 6000 Time used by MUMPS (direct) solver 4000 5000 3500 8 3000 E 2500 Weight 2000 1500 2000 1000 1000 500 0 250000 350000 150000 150000 250000 350000 Number of Unknowns Number of Unknowns

MEMORY

TIME

1.2 Ghz processor

Iterative solvers are needed for simulation of 3D resistivity logging applications

Equation: $-\Delta u = 0$ Boundary Conditions: Neumann, Dirichlet

Solution of Direct Problem

Solution of Dual Problem

www.ices.utexas.edu/%7Epardo

 x^{z}

3D hp-FEM: NUMERICAL RESULTS (DC)

Exponential Convergence in the Quantity of Interest

CONCLUSIONS AND FUTURE WORK

- The self-adaptive goal-oriented hp-adaptive strategy converges exponentially in terms of a user-prescribed quantity of interest vs. the CPU time.
- We obtain fast, reliable and accurate solutions for problems with a large dynamic range and high material constrasts.
- We obtain meaningful physical conclusions that are useful for instrument modeling and for assesment of petrophysical properties.

Work in Progress

- To further develop the parallel version of the 3D *hp*-FE code as well as a multigrid solver.
- To apply the self-adaptive goal-oriented *hp*-FEM for inversion of 2D multi-physic problems.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz

14 Jun 2006

ACKNOWLEDGMENTS

www.ices.utexas.edu/%7Epardo