Shell Presentation, 1:00 pm

A Self-Adaptive Goal-Oriented *hp*-Finite Element Simulation of Resistivity Cross-Well Measurements with One Steel Cased Well"

> David Pardo (dzubiaur@yahoo.es), Yang Wei, C. Torres-Verdin, L. Demkowicz

Collaborators: Science Department of Baker-Atlas, L. Tabarovsky, J. Kurtz, M. Paszynski, D. Xue

June 14, 2005

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

THE hp-FINITE ELEMENT METHOD

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

THE hp-FINITE ELEMENT METHOD

Model Problem with Steel Casing

GOAL-ORIENTED ADAPTIVITY

GOAL-ORIENTED ADAPTIVITY

Movie Presentation (Sensitivity Functions)

We want to study resolution and depth of investigation of a logging instrument.

We have:
$$|L(\Psi)| = |\int S \ dV| \leq \int |S| \ dV.$$

In the next movies, we display: $\log_{10} |S|$.

Scales:

- ullet Red $ightarrow |S| = |L(\Psi)| * 10^4$.
- Blue $ightarrow |S| = |L(\Psi)| * 10^{-2}$.

Direct Current

SELF-ADAPTIVE GOAL-ORIENTED *hp*-**FEM**

Algorithm for Goal-Oriented Adaptivity

Compute $e = \Psi_{h/2,p+1} - \Psi_{hp}$, and $\tilde{e} = \Psi_{h/2,p+1} - \Pi_{hp}\Psi_{h/2,p+1}$. Compute $\epsilon = G_{h/2,p+1} - G_{hp}$, and $\tilde{\epsilon} = G_{h/2,p+1} - \Pi_{hp}G_{h/2,p+1}$. $|L(e)| = |b(e,\epsilon)| \sim |b(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} |b_{K}(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} ||\tilde{e}||_{E,K} ||\tilde{\epsilon}||_{E,K}$.

Apply the fully automatic hp-adaptive algorithm.

SELF-ADAPTIVE GOAL-ORIENTED *hp*-**FEM**

Model Problem with Steel Casing

Flexibility (What Problems Can We Solve?)

Time-Harmonic Maxwell's Equations

${f abla} imes { m H} = (ar{ar{\sigma}} + j\omegaar{ar{\epsilon}}){ m E} + { m J}^{imp}$	Ampere's law
${f abla} imes { m E} = -j\omegaar{ar{\mu}}{ m H} - { m M}^{imp}$	Faraday's law
${oldsymbol abla} \cdot (ar ar ar ar {ar \epsilon} { m E}) = ho$	Gauss' law of Electricity
${oldsymbol abla} \cdot (ar \mu { m H}) = 0$	Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathrm{E} \in \mathrm{E}_D + H_D(\mathrm{curl};\Omega)$$
 such that:
 $\int_{\Omega} (\bar{\bar{\mu}}^{-1} \nabla \times \mathrm{E}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV - \int_{\Omega} (\bar{\bar{k}}^2 \mathrm{E}) \cdot \bar{\mathrm{F}} \, dV = -j\omega \int_{\Omega} \mathrm{J}^{imp} \cdot \bar{\mathrm{F}} \, dV$
 $+j\omega \int_{\Gamma_N} \mathrm{J}^{imp}_{\Gamma_N} \cdot \bar{\mathrm{F}}_t \, dS - \int_{\Omega} (\bar{\bar{\mu}}^{-1} \mathrm{M}^{imp}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV \quad \forall \, \mathrm{F} \in H_D(\mathrm{curl};\Omega)$

Flexibility (What Problems Can We Solve?) AXISYMMETRIC PROBLEMS

 E_{ϕ} -Variational Formulation (Azimuthal)

 $\begin{cases} \mathsf{Find} \ E_{\phi} \in E_{\phi,D} + \tilde{H}^{1}_{D}(\Omega) \text{ such that:} \\ \int_{\Omega} (\bar{\mu}^{-1}_{\rho,z} \nabla \times E_{\phi}) \cdot (\nabla \times \bar{F}_{\phi}) \ dV - \int_{\Omega} (\bar{k}^{2}_{\phi} E_{\phi}) \cdot \bar{F}_{\phi} \ dV = -j\omega \int_{\Omega} J^{imp}_{\phi} \ \bar{F}_{\phi} \ dV \\ +j\omega \int_{\Gamma_{N}} J^{imp}_{\phi,\Gamma_{N}} \ \bar{F}_{\phi} \ dS - \int_{\Omega} (\bar{\mu}^{-1}_{\rho,z} \mathrm{M}^{imp}_{\rho,z}) \cdot \bar{F}_{\phi} \ dV \quad \forall \ F_{\phi} \in \tilde{H}^{1}_{D}(\Omega) \end{cases}$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

Find
$$(E_{
ho}, E_z) \in E_D + \tilde{H}_D(\operatorname{curl}; \Omega)$$
 such that:

$$\int_{\Omega} (\bar{\mu}_{\phi}^{-1} \nabla \times E_{\rho,z}) \cdot (\nabla \times \bar{F}_{\rho,z}) \, dV - \int_{\Omega} (\bar{k}_{\rho,z}^2 E_{\rho,z}) \cdot \bar{F}_{\rho,z} \, dV =$$

$$-j\omega \int_{\Omega} J_{\rho}^{imp} \bar{F}_{\rho} + J_z^{imp} \bar{F}_z \, dV + j\omega \int_{\Gamma_N} J_{\rho,\Gamma_N}^{imp} \bar{F}_{\rho} + J_{z,\Gamma_N}^{imp} \bar{F}_z \, dS$$

$$-\int_{\Omega} (\bar{\mu}_{\phi}^{-1} M_{\phi}^{imp}) \cdot \bar{F}_{\rho,z} \, dV \quad \forall (F_{\rho}, F_z) \in \tilde{H}_D(\operatorname{curl}; \Omega)$$

Flexibility (What Problems Can We Solve?)

- Physical Devices: Casing, Casing Imperfections, Materials with Different Magnetic Permeabilities, Insulators, Displacement Currents, Combination of All, etc.
- Materials: Isotropic, Anisotropic*.
- Sources: Toroidal Antennas, Solenoidal Antennas, Dipoles in Any Direction, Electrodes, Finite Size Antennas, Combination of All, etc.
- Logging Instruments: Logging While Drilling (LWD), Laterolog, Normal, Induction, Dielectric Instruments, Cross-well, etc.
- Any Frequency (0-10 Ghz).

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with casing.

• Verification of Physical Properties.

- 1. Reciprocity principle (Gregory Itskovich).
- 2. Discrete divergence free approximation for edge elements.

• Numerical Verifications.

- 1. Different size of domain and antennas.
- 2. Comparison against other numerical software (Yang Wei).
- 3. Error control provided by the fine grid solution.
- 4. Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Error control provided by the fine grid solution.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with casing.

• Verification of Physical Properties.

- 1. Reciprocity principle (Gregory Itskovich).
- 2. Discrete divergence free approximation for edge elements.

• Numerical Verifications.

- 1. Different size of domain and antennas.
- 2. Comparison against other numerical software (Yang Wei).
- 3. Error control provided by the fine grid.
- 4. Comparison between continuous elements vs. edge elements.

HIGHLY RELIABLE SOFTWARE

Accuracy (Are the Solutions Accurate?)

EXTREMELY ACCURATE SOFTWARE

Performance (How Fast Can We Solve the Problems?)

80 Vert. Pos.	$10^{-6} \Omega \cdot m$	$10^{-5} \Omega \cdot m$
Toroid (10 Khz)	19' 46"	16' 28"
Ring of Vert. Dipoles (10 Khz)	22' 47"	17' 02"
Ring of Horiz. Dipoles (10 Khz)	19' 25"	13' 25"
Electrodes (0 Hz)	10' 10"	8' 35"

IBM Power 4 compiler 1.3 Ghz (4 years old)

Possible improvements in performance:

- To use a 3.4 Ghz processor.
- To execute the code in 8 processors (10 positions per processor).
- To improve implementation.

HIGH PERFORMANCE SOFTWARE

5.5" Borehole radio ; 0.5" Casing ; 2" Cement

A Cross-Well Study with One Cased Well: Toroid Antennas

A Cross-Well Study: Vertical Dipoles

A Cross-Well Study: Horizontal Dipoles

A Cross-Well Study: Different Antennas

A Cross-Well Study: Toroid Antennas (Outside Borehole)

A Cross-Well Study: Vertical Dipoles (Outside Borehole)

A Cross-Well Study: Horizontal Dipoles (Outside Borehole)

A Cross-Well Study: Different Antennas (Outside Borehole)

A Cross-Well Study: Antennas Inside and Outside Borehole

A Cross-Well Study: Receivers at 500 m (Horizontal Distance)

A Cross-Well Study: First Vertical Diff. of Magnetic Field

A Cross-Well Study: First Vert. Diff. Magnetic Field (50 m)

A Cross-Well Study: Water Invasion with Toroids (250 m)

A Cross-Well Study: Water Invasion, Vert. Dipoles (250 m)

A Cross-Well Study: Water Invasion, Horiz. Dipoles (250 m)

The University of Texas at Austin

High Performance Finite Element Software

A Cross-Well Study: Water Invasion, Toroid (50 m)

A Cross-Well Study: Water Invasion, Vert. Dipoles (50 m)

A Cross-Well Study: Water Invasion, Horiz. Dipoles (50 m)

A Cross-Well Study: Magnetic Perm., Toroid (250 m)

A Cross-Well Study: Magnetic Perm., Vert. Dipoles (250 m)

A Cross-Well Study: Magnetic Perm., Horiz. Dipoles (250 m)

A Cross-Well Study: Magnetic Perm., Horiz. Dipoles (250 m)

A Cross-Well Study: Frequency Dependance at 250 m

A Cross-Well Study: Distance Dependance at 1 Hz

CONCLUSIONS AND FUTURE WORK

- It is possible to accurately simulate cross-well configurations with one steel cased well by using the self-adaptive goal-oriented *hp*-FEM.
- For the discussed cross-well problem, numerical results suggest to:
 - 1. Use a ring of horizontal dipoles surrounding the casing. If this is not possible, place a ring of vertical dipoles inside the borehole.
 - 2. Use low frequencies (below 200 Hz).
 - 3. Use downhole antennas (if possible) for cross-well EM measurements.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

FUTURE WORK

Simulation of 3D Resistivity Logging Problems

- PART I: Simulate 3D DC Resistivity Logging Problems.
 - Estimated completion time: 8-10 months (40 hours/week).
 - Main challenge: Speed.
 - Expected results: Similar results as in 2D.
- PART II: Simulate 3D AC Resistivity Logging Problems.
 - Estimated completion time: 8-10 months (40 hours/week).
 - Main challenge: Speed and Implementation.
 - Expected results: Similar results as in 2D.