A Progress Report at Baker-Hughes on:

The Development of a 3D Self-Adaptive Goal-Oriented hp-Finite Element Software for Simulations of DC Resistivity Logging Instruments

D. Pardo (dzubiaur@gmail.com), M. Paszynski, C. Torres-Verdin, L. Demkowicz, J. Kurtz

Collaborators: Science Department of Baker-Hughes, C. Michler, L.E. Garcia-Castillo, A. Zdunek, W. Rachowicz

June 23, 2006

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

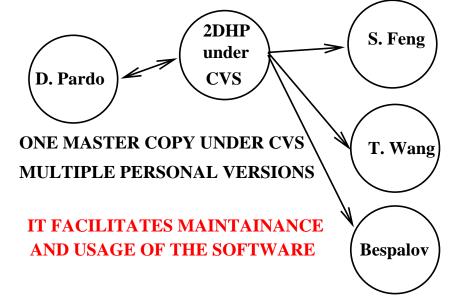
THE UNIVERSITY OF TEXAS AT AUSTIN

OVERVIEW

- 1. Recent Advances in the 2D High Performance FE Software
 - Toward a User-Friendly Interface.
 - Perfectly Matched Layers (PML).
- 2. Current Stage of the 3D High Performance FE Software
 - User Interface.
 - Goal-Oriented Automatic Adaptivity.
 - Geometry and Graphics.
 - Iterative Solver.
 - Parallel Implementation.
- 3. Preliminary Results
- 4. Conclusions and Future Work

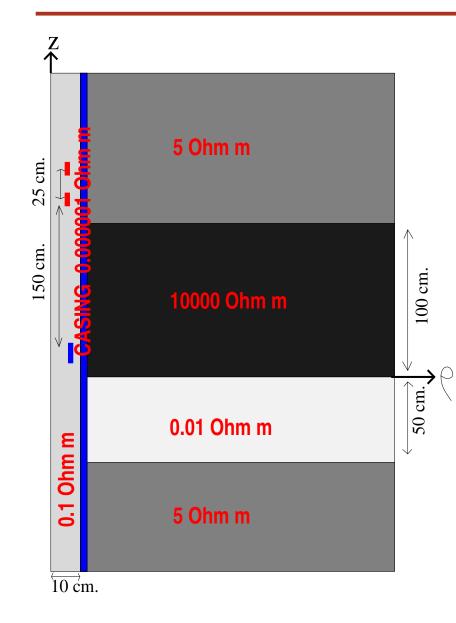
Toward a User-Friendly Interface

Concurrent Version System (CVS).



- Windows Compatible.
- Module-oriented.
- A user-friendly interface module is under development.

PERFECTLY MATCHED LAYER (PML)



Axisymmetric 3D problem.

Six different materials.

Through casing resistivity instrument.

Varying coefficients by up to 10 orders of magnitude.

PERFECTLY MATCHED LAYER (PML)

Perfectly Matched Layer (PML) Formulation

The PML is composed of the following anisotropic materials:

 s_{ρ} , s_{ϕ} , and s_z are the stretching coordinate functions. We define:

$$s_{
ho}=s_{\phi}=s_{z}=1+\phi-j\phi$$

We consider three different PML's by defining three different functions $\phi(x)$:

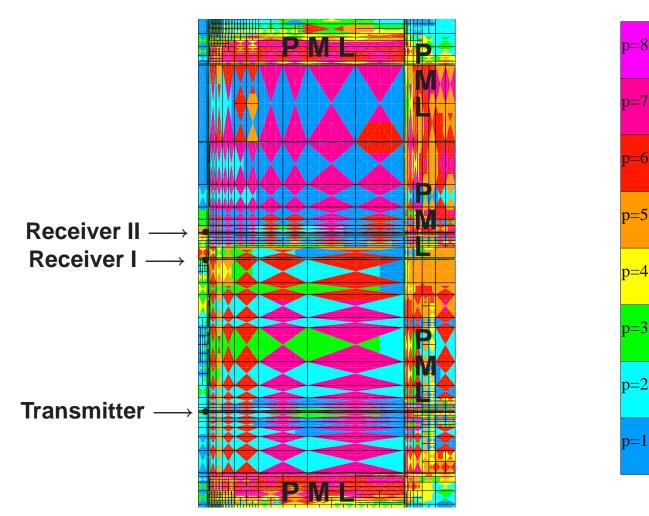
$$\phi(x) = \left\{ egin{array}{ll} \phi_1(x) = \left[2(rac{x-x_0}{x_1-x_0})
ight]^{17} & {\sf PML} \ 1, \ \phi_2(x) = 20000 \left(rac{x-x_0}{x_1-x_0}
ight) & {\sf PML} \ 2, & x \in (x_0,x_1) \ \phi_3(x) = 10000 & {\sf PML} \ 3. \end{array}
ight.$$

Within the PML, both propagating and evanescent waves become arbitrarily fast evanescent waves.

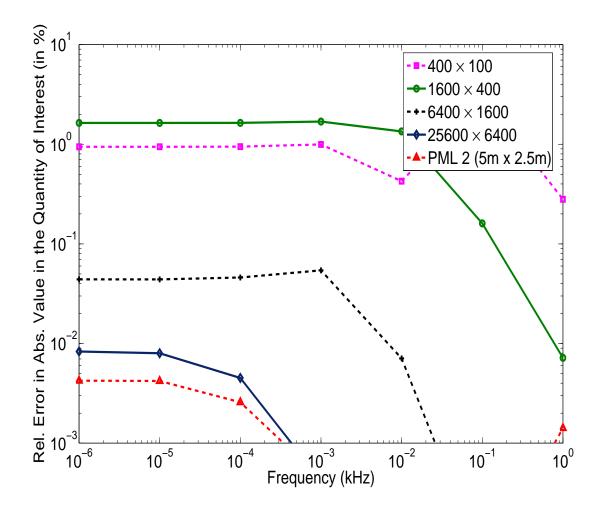
The University of Texas at Austin

3D High Performance Finite Element Software

Final hp-Grid with a 0.5 m Thick PML.

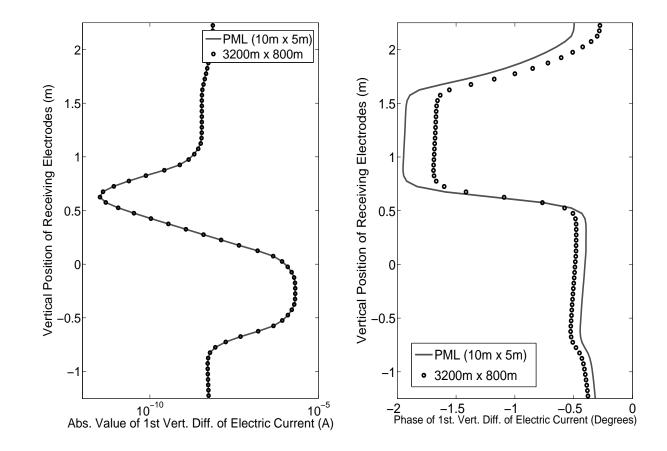


PERFECTLY MATCHED LAYER (PML)



PMLs provide accurate solutions without reflections from the boundary

PERFECTLY MATCHED LAYER (PML)



If we compute the phase, a computational domain of 3200 m x 800 m is not large enough.

7

PERFECTLY MATCHED LAYER (PML)

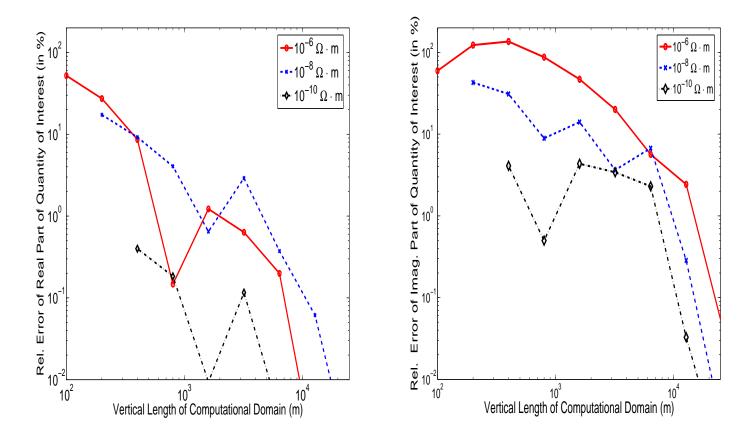
Number of unknowns employed by the self-adaptive goal-oriented hp-FE method as a function of the size of computational domain and presence of a PML

Domain Size (m)	Nr. Unknowns	Nr. Unknowns
	($pprox 1\%$ error)	($pprox 0.01\%$ error)
PML 1 (5 x 2.5)	19541 (0.083%)	24886 (0.037%)
PML 2 (5 x 2.5)	7095 (0.29%)	13345 (0.006%)
PML 3 (5 x 2.5)	8679 (1.04%)	19640 (0.009%)
6400 x 1600	12327 (0.43%)	18850 (0.014%)
12800 x 3200	12964 (0.43%)	18892 (0.014%)
25600 x 6400	12099 (1.22%)	19828 (0.037%)

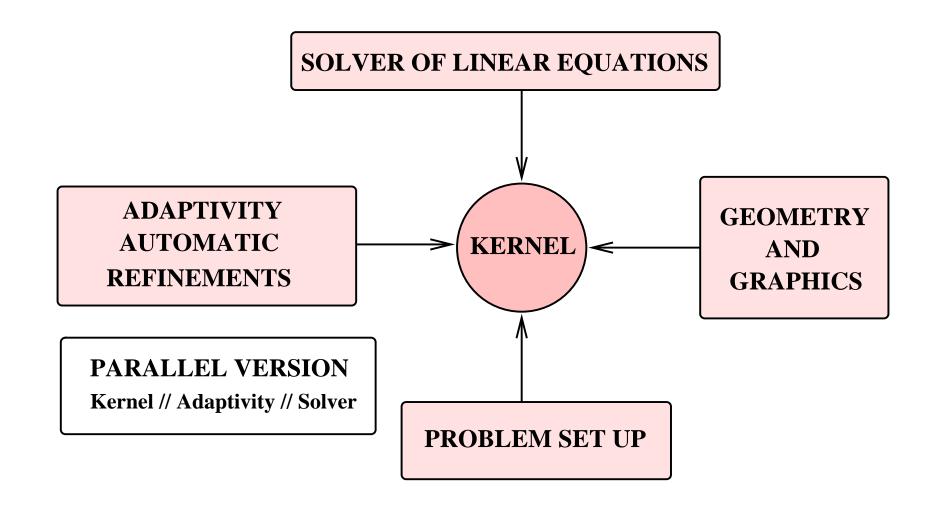
PML 2 provides considerable savings

PERFECTLY MATCHED LAYER (PML)

Reference Solution: PML 1 (5 m x 2.5 m) - 1 Hz -.



If a PML is not used, we need to consider a computational domain with several thousand meters in the vertical direction.



Main Components of the Software

- Goal-oriented adaptivity. β -Version & Presented
- Problem Set-up and user-interface.

β-Version & Presented

- Geometry. Iso-parametric elements used for adaptivity, and exact geometry elements used β -Version & Presented for computation of solutions.
- Direct solver based on the package MUMPS. Completed & Presented
- Graphics. New graphics based on package α -Version VTK.
- Iterative solver: Multigrid goal-oriented solver α -Version with edge-based preconditioning.
- Parallel version.
- Friendly user-interface.
- Parallel iterative solver.

 α -Version

- **Under development**
- **Under development**

11

Main Components of the Software

- Goal-oriented adaptivity. β -Version & Presented
- Problem Set-up and user-interface. β -Version & Presented
- Geometry. Iso-parametric elements used for adaptivity, and exact geometry elements used β -Version & Presented for computation of solutions.
- Direct solver based on the package MUMPS. Completed & Presented
- Graphics. New graphics based on package α -Version VTK.
- Iterative solver: Multigrid goal-oriented solver α -Version with edge-based preconditioning.
- Parallel version.
- Friendly user-interface.
- Parallel iterative solver.

 α -Version

Under development

Under development

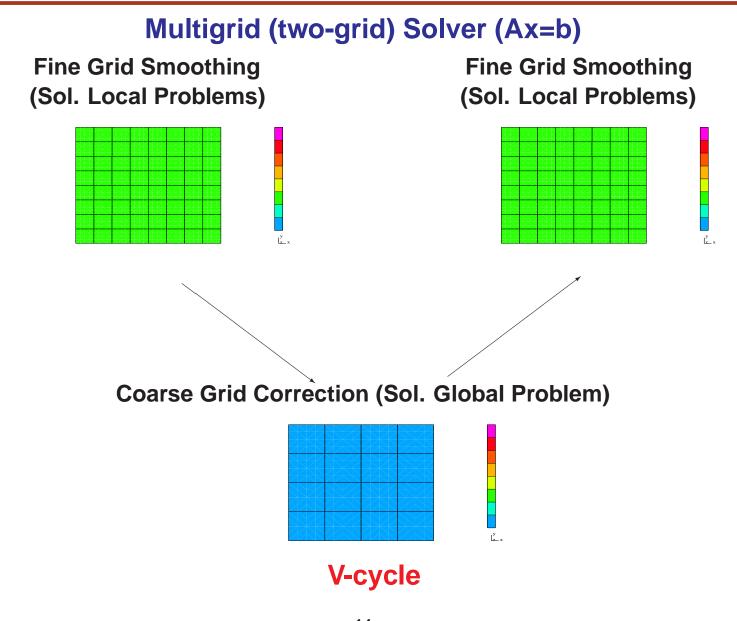
Main Components of the Software

- Goal-oriented adaptivity. β -Version & Presented
- Problem Set-up and user-interface. β -Version & Presented
- Geometry. Iso-parametric elements used for adaptivity, and exact geometry elements used β -Version & Presented for computation of solutions.
- Direct solver based on the package MUMPS. Completed & Presented
- Graphics. New graphics based on package α -Version & Presented VTK.
- Iterative solver: Multigrid goal-oriented solver α -Version with edge-based preconditioning.
- Parallel version.
- Friendly user-interface.
- Parallel iterative solver.

 α -Version

Under development

Under development



The University of Texas at Austin

23 Jun 2006

We seek x such that Ax = b. Consider the following iterative scheme:

$$egin{aligned} r^{(n+1)} &= [I - lpha^{(n)} AS] r^{(n)} \ x^{(n+1)} &= x^{(n)} + lpha^{(n)} Sr^{(n)} \end{aligned}$$

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

$$lpha^{(n)} = rg \min \parallel x^{(n+1)} - x \parallel_A = rac{(A^{-1}r^{(n)}, Sr^{(n)})_A}{(Sr^{(n)}, Sr^{(n)})_A}$$

Then, we define our two grid solver as:

1 iteration with
$$S=S_F=\sum A_i^{-1}$$
 $+$
1 iteration with $S=S_C=P_CA_C^{-1}R_C$

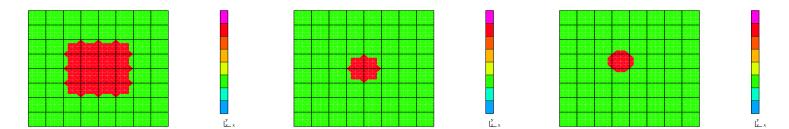
Selection of patches (for block Jacobi smoother)

Coarse Grid

		 			 7			7			/	/
			\leq									Ζ
			4									\geq
÷	K			K	\rightarrow	<	K		\vdash	÷	\geq	\geq
			\leq						Ź			7
			4						\geq			\geq
Ę	K		K	K	\rightarrow		K		Þ	÷		2
			\leq						ÍZ			7
			4									\geq
÷	K		K	K	\rightarrow	E				\leq	\geq	\geq
			Z						Ź			\overline{Z}
			Ζ,									\geq
			1			1				1		\sim

global hp-refinement

Three examples of patches (blocks) for the Block Jacobi smoother:



Example 1: span of basis functions with support contained in the support of a coarse grid vertex node basis function. Example 2: span of basis functions with support contained in the support of a fine grid vertex node basis function. Example 3: span of basis functions corresponding to an element stiffness matrix.

Error reduction and stopping criteria

Let $e^{(n)} = x^{(n)} - x$ the error at step n, $\tilde{e}^{(n)} = [I - S_C A]e^{(n)} = [I - P_C]e^{(n)}$. Then:

$$\frac{\parallel e^{(n+1)} \parallel_A^2}{\parallel e^{(n)} \parallel_A^2} = 1 - \frac{\mid (\tilde{e}^{(n)}, S_F A \tilde{e}^{(n)})_A \mid^2}{\parallel \tilde{e}^{(n)} \parallel_A^2 \parallel S_F A \tilde{e}^{(n)} \parallel_A^2} = 1 - \frac{\mid (\tilde{e}^{(n)}, (P_C + S_F A) \tilde{e}^{(n)})_A \mid^2}{\parallel \tilde{e}^{(n)} \parallel_A^2 \parallel S_F A \tilde{e}^{(n)} \parallel_A^2}$$

Then:

$$\frac{\| e^{(n+1)} \|_{A}^{2}}{\| e^{(n)} \|_{A}^{2}} \leq \sup_{e} [1 - \frac{\| (e, (P_{C} + S_{F}A)e)_{A} \|^{2}}{\| e \|_{A}^{2} \| S_{F}Ae \|_{A}^{2}}] \leq C < 1 \quad \text{(Error Reduction)}$$

For our stopping criteria, we want: Iterative Solver Error \approx Discretization Error. That is:

 $\frac{\| e^{(n+1)} \|_A}{\| e^{(0)} \|_A} \le 0.01$ (Stopping Criteria)

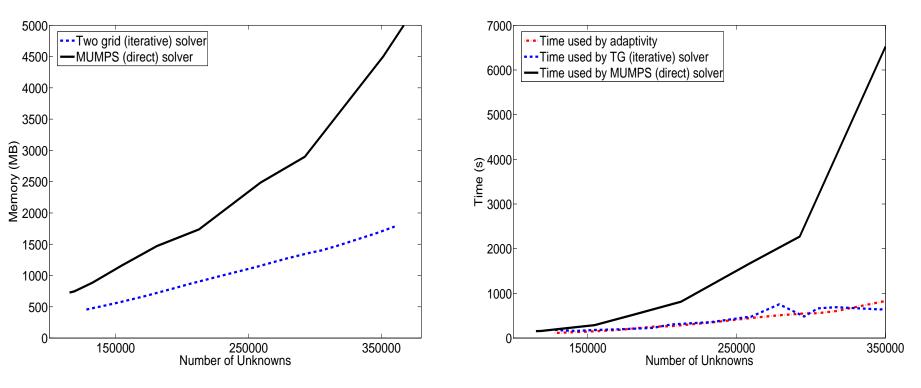
Major Challenges (Iterative Solver)

The use of goal-oriented adaptivity. A new strategy for selecting the optimal relaxation parameter has been implemented. This strategy minimizes the error in the quantity of interest rather than in the energy-norm.

The presence of (arbitrary) elongated elements. An additional edge-based (global) smoother has been implemented. This additional smoother makes the convergence of the iterative solver independent of the aspect ratio of the elements.

Convergence theory for elongated elements. Under development.

Axisymmetric Model Problem



MEMORY

TIME

1.2 Ghz processor

Iterative solvers are needed for simulation of 3D resistivity logging applications

Main Components of the Software

- Goal-oriented adaptivity. β -Version & Presented
- Problem Set-up and user-interface. β -Version & Presented
- Geometry. Iso-parametric elements used for adaptivity, and exact geometry elements used β -Version & Presented for computation of solutions.
- Direct solver based on the package MUMPS. Completed & Presented
- Graphics. New graphics based on package α -Version & Presented VTK.
- Iterative solver: Multigrid goal-oriented solver α -Version & Presented with edge-based preconditioning.
- Parallel version.
- Friendly user-interface.
- Parallel iterative solver.

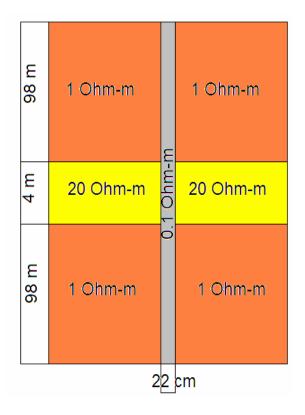
 α -Version

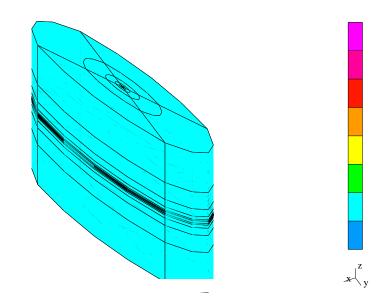
Under development

Under development

Parallel Version

Domain Demcomposition Based Parallel *hp***-Adaptivity**



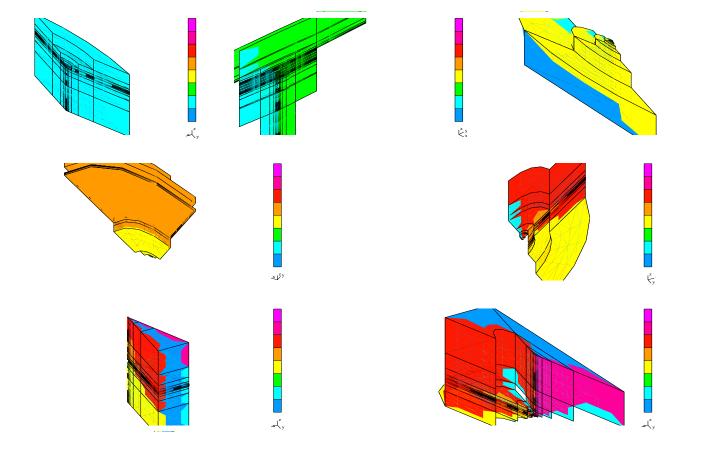


يل^z

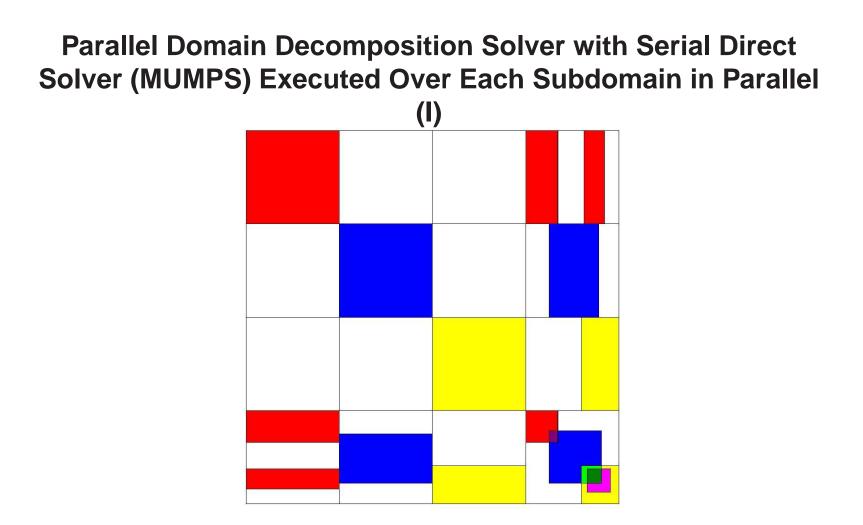
CURRENT STAGE OF THE 3D *hp***-FE SOFTWARE**

Parallel Version

Domain Demcomposition Based Parallel *hp***-Adaptivity**

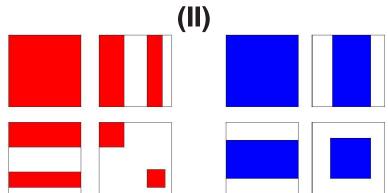


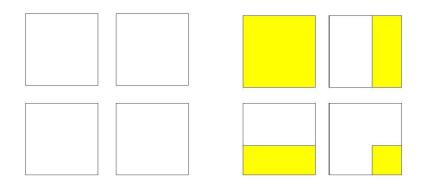
Parallel Direct Solver



Parallel Direct Solver

Parallel Domain Decomposition Solver with Serial Direct Solver (MUMPS) Executed Over Each Subdomain in Parallel

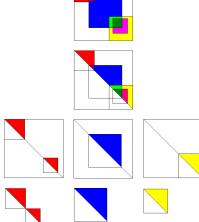




CURRENT STAGE OF THE 3D *hp***-FE SOFTWARE**

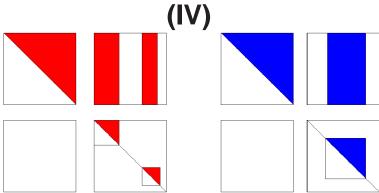
Parallel Direct Solver

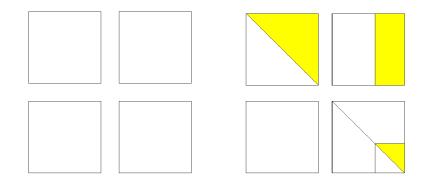
Parallel Domain Decomposition Solver with Serial Direct Solver (MUMPS) Executed Over Each Subdomain in Parallel (III)



Parallel Direct Solver

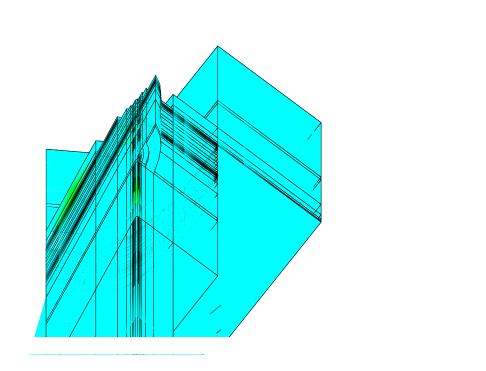
Parallel Domain Decomposition Solver with Serial Direct Solver (MUMPS) Executed Over Each Subdomain in Parallel





Parallel Automatic *hp***-Adaptivity**

Parallel Mesh Optimization (Decisions About Optimal Mesh Refinements Made Fully in Parallel)



The University of Texas at Austin

 $\langle v \rangle_{y}^{z}$

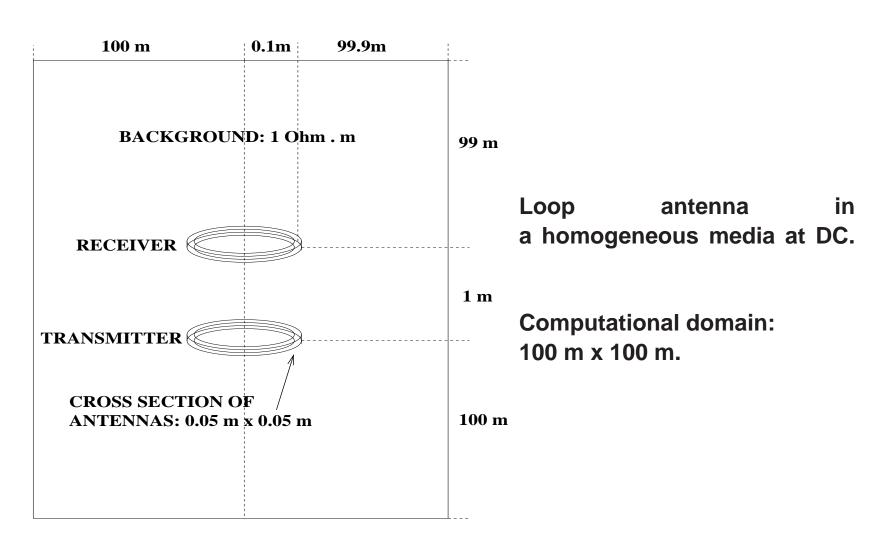
23 Jun 2006

Parallel Version. Main challenges.

- Managing data migration, minimizing interface size $(\alpha$ -Version).
- Global numbering of interface nodes (α -Version).
- Retrieving Schur complement from serial solver (MUMPS) (α -Version).
- Aggregating contributions to Schur complement (global mapping required) (α -Version).
- Parallelization of the goal-oriented adaptivity (In testing).
- Parallelization of multi-grid iterative solver (Under development).

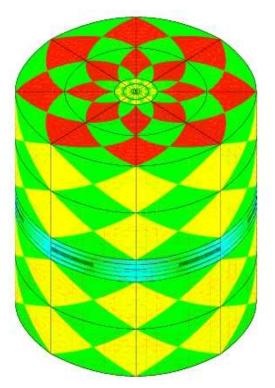
PRELIMINARY RESULTS ($-\nabla(\overline{\overline{\sigma}} \cdot \nabla \psi) = \mathbf{f}$ **)**

Electrode Problem



Electrode Problem

Final *hp*-grid



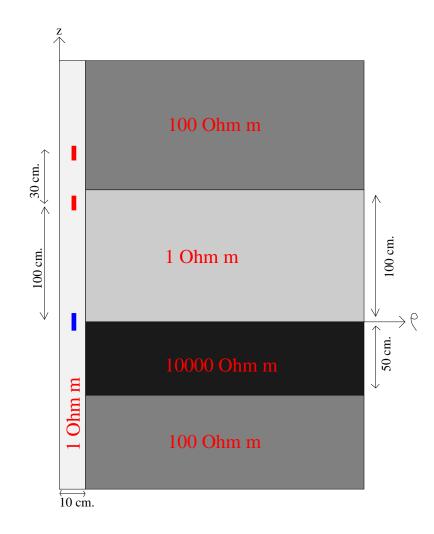
Final solution

2D Solution: 0.078131

3D Solution: 0.078121

PRELIMINARY RESULTS $(-\nabla(\bar{\bar{\sigma}} \cdot \nabla \psi) = \mathbf{f})$

Axisymmetric Model Problem



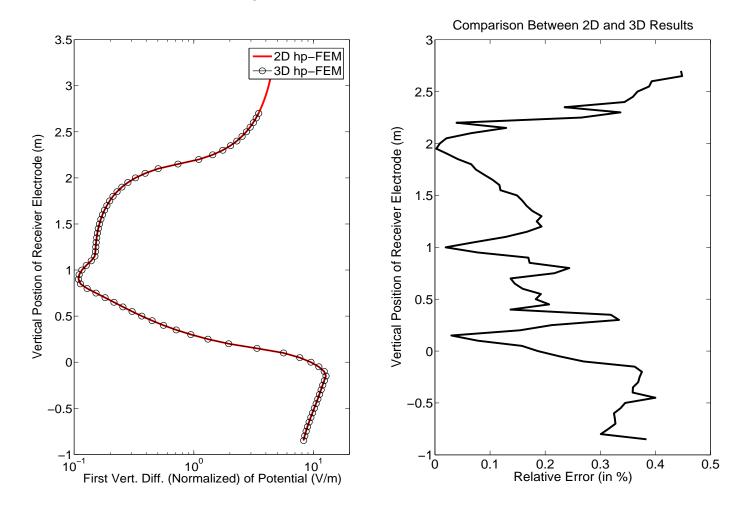
• Borehole and four materials on the formation.

• Size of computational domain: $100m \times 100m$.

- Size of electrode: $0.05m \times 0.05m$.
- Objective: Compute
 First Vertical
 Difference of
 Potential.

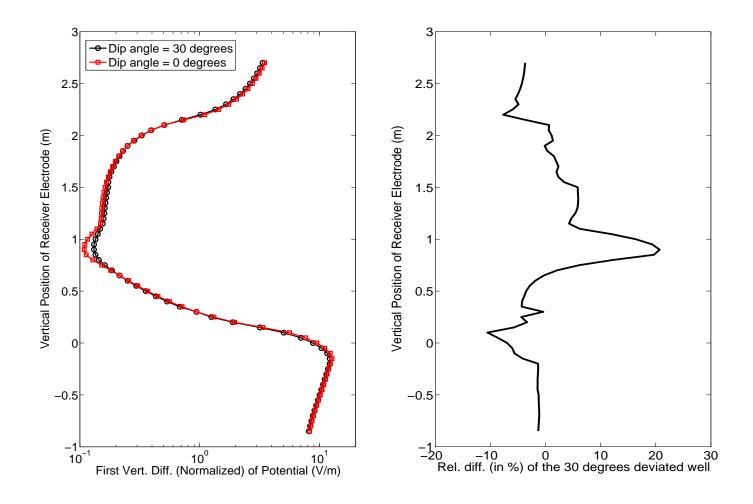
PRELIMINARY RESULTS $(-\nabla(\bar{\bar{\sigma}} \cdot \nabla \psi) = \mathbf{f})$

Axisymmetric Model Problem



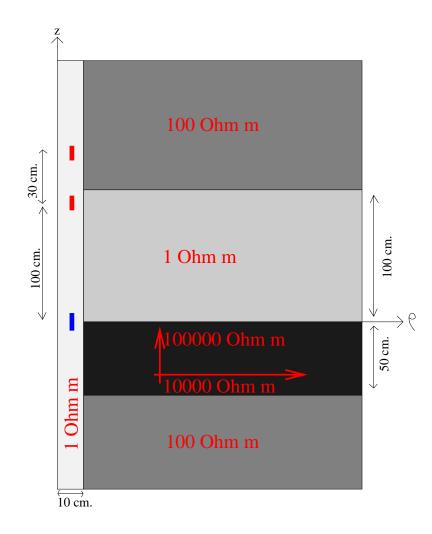
PRELIMINARY RESULTS $(-\nabla(\bar{\bar{\sigma}} \cdot \nabla \psi) = \mathbf{f})$

Axisymmetric Model Problem



PRELIMINARY RESULTS ($-\nabla(\bar{\bar{\sigma}}\cdot\nabla\psi)=\mathbf{f}$)

Axisymmetric Model Problem



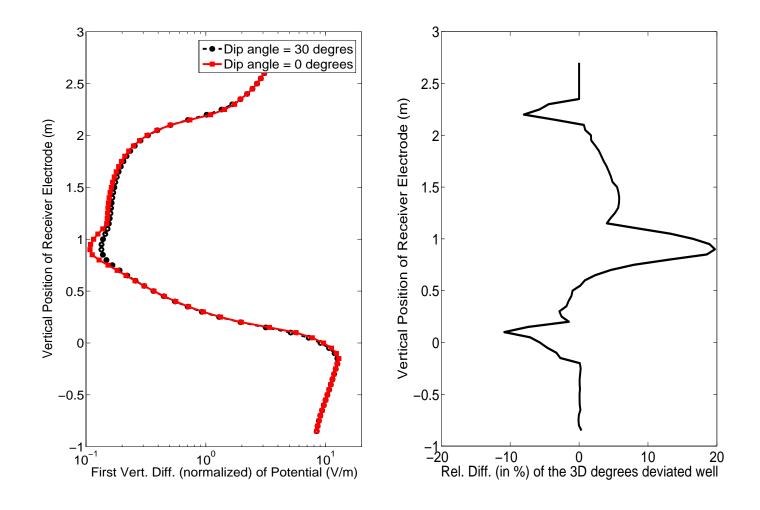
• Borehole and four materials on the formation.

• Size of computational domain: $100m \times 100m$.

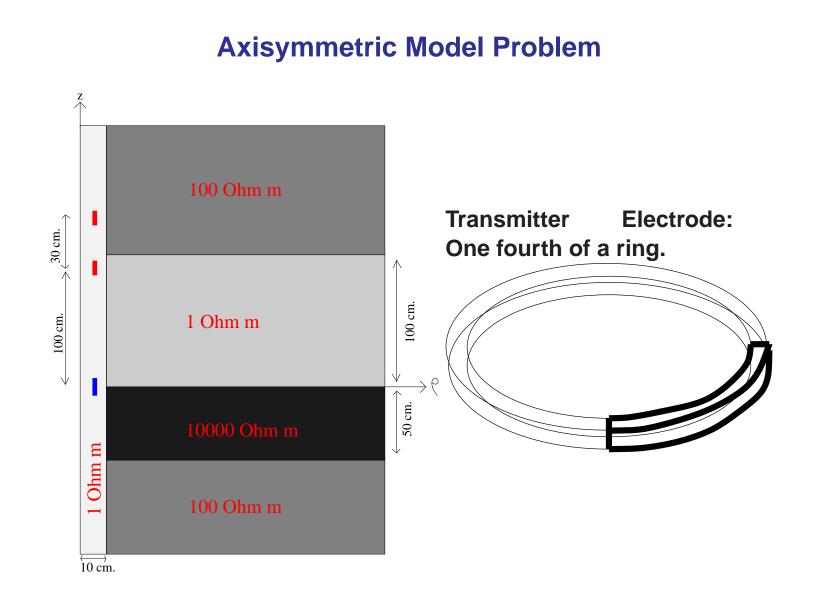
- Size of electrode: $0.05m \times 0.05m$.
- Objective: Compute
 First Vertical
 Difference of
 Potential.

PRELIMINARY RESULTS $(-\nabla(\bar{\bar{\sigma}} \cdot \nabla \psi) = \mathbf{f})$

Axisymmetric Model Problem



PRELIMINARY RESULTS $(-\nabla(\bar{\sigma} \cdot \nabla \psi) = \mathbf{f})$



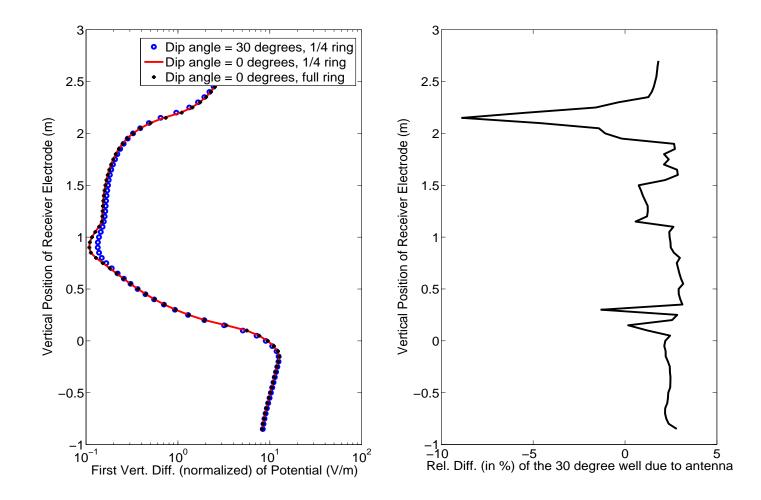
The University of Texas at Austin

36

3D High Performance Finite Element Software

PRELIMINARY RESULTS $(-\nabla(\overline{\overline{\sigma}} \cdot \nabla \psi) = \mathbf{f})$

Axisymmetric Model Problem



CONCLUSIONS AND FUTURE WORK

- The self-adaptive goal-oriented *hp*-adaptive strategy converges exponentially in terms of a user-prescribed quantity of interest vs. the CPU time.
- Preliminary results indicate that it shall be possible to simulate a variety of EM logging instruments in deviated wells by using the 3D self-adaptive goal-oriented *hp*-FEM.
 - The software is expected to be suitable for ALL kind of resistivity logging instruments in possibly cased wells.
 - Cylindrical geometries can be accurately described by using higher-order elements.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz, et. al.

FUTURE WORK

Tasks and Completion Date

_ 3D DC CODE _____

- PHASE I: NEW adaptive package and solver. β -VERSION.
- PHASE II: Goal-Oriented Adaptivity. β -VERSION.
- PHASE III: Interface for Describing Logging Problems. β -VERSION.
- PHASE IV: New 3D Graphics Package. α -VERSION.
- PHASE V: Parallel Solver (MUMPS). α -VERSION.
- PHASE VI: Iterative Solver. α -VERSION.
- PHASE VII: Logging Examples (without casing). PRELIMINARY RESULTS.
- PHASE VIII: Parallel Version of 3D code. 20 Jul 2006.
- PHASE IX: Through Casing Resistivity Instruments. 20 Aug 2006.
- PHASE X: 3D Perfectly Matched Layer (PML). 20 Oct 2006.

D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz, et. al.

FUTURE WORK

Tasks and Completion Date

_ 3D AC CODE____

- PHASE I: NEW adaptive package and solver. 1 Aug 2006.
- PHASE II: Edge-element formulation. 1 Sep 2006.
- PHASE III: Goal-Oriented Adaptivity. 1 Oct 2006.
- PHASE IV: Interface for Describing Logging Problems. 1 Nov 2006.
- PHASE V: Parallel Solver (MUMPS). 1 Nov 2006.
- PHASE VI: Iterative Solver. 1 Feb 2007.
- PHASE VII: Logging Examples. 1 May 2007.
- PHASE VIII: 3D AC Perfectly Matched Layer (PML). 1 Jun 2007.
- PHASE IX: Parallel Version of 3D code. 1 Jul 2007.
- PHASE X: Through Casing Resistivity Instruments. 1 Sep 2007.

D. Pardo, M. Paszynski, C. Torres-Verdin, L. Demkowicz, et. al.

FUTURE WORK

Tasks and Completion Date

Outcome of the project: A software for simulation of the following types of resistivity logging problems.

- Induction instruments.
- Laterolog instruments.
- Deviated wells.
- Eccentric wells.
- Anisotropy effects.
- Patch antennas/electrodes.
- Through casing resistivity tools.
- Different frequencies.

All of the above (when applicable) can be combined in one problem. For example, a laterolog instrument in a deviated well with eccentricity, and with a patch antenna.

APPENDIX: SHOULD WE USE CYLINDRICAL GRIDS?

The possibility of using cylindrical grids

____ MAIN ADVANTAGES _____

Simpler geometries.

Possibly less elements needed on the azimuthal direction.

____ MAIN DISADVANTAGES __

Advantages mentioned above are not clear in the case of deviated wells.

Extra boundary condition needed ($\Psi(0) = \Psi(2\pi)$).

Integration becomes not exact.

New partial differential equations need to be implemented.

Continuous elements and Nedelec elements are based on cartesian geometries. At $\rho = 0$ degenerated elements may be needed.

FOR DEVIATED WELLS, IT IS NOT CLEAR THAT THE USE OF CYLINDRICAL GRIDS (AS OPPOSED TO CARTESIAN GRIDS) BECOMES MORE ADEQUATE