PIERS 2008, Cambridge, MA, USA

Design of Frequency Domain EM Finite Elements for Geophysical Applications

D. Pardo, M. J. Nam, C. Torres-Verdín, M. Paszynski

July 2, 2008

Department of Petroleum and Geosystems Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

GEOPHYSICAL APPLICATIONS

Type of Problems We Can Solve with our FE Software

Applications	Borehole Logging Controlled Source EM				
Spatial Dimensions		2D	3D		
Well Type	Vertical We	II Deviate	d Well E	ccente	ered Tool
Logging Instruments	LWD/MWD	Norma	I/Laterolo	g	Dual Laterolog
	Triaxial Induction	Dielectric Instruments		ents	Cross-Well
Frequency	0-1 GHz				
Materials	Isotropic Anisotropic				
Physical Devices	Magnetic Buffers	Insulators		Casing	
r nysical Devices	Casing Imperfections	Displacer	nent Curr	ents	Combination of All
Sources	Finite Size Antennas	Dipoles in Any Direction		Electrodes	
	Solenoidal Antennas	Toroidal Antennas		Combination of All	
Invasion		Water	Oil etc.		

1

MOST (OIL-INDUSTRY) GEOPHYSICAL PROBLEMS

OVERVIEW

- 1. Motivation:
 - Simulation of borehole logging measurements.
 - Simulation of marine controlled source electromagnetics (CSEM).
- 2. Mathematical Formulation Using a Fourier-Finite-Element Method.
- 3. Discretization:
 - H^1 and H(curl) finite elements.
 - Self-adaptive goal-oriented *hp*-refinements.
- 4. Parallel Implementation.
- 5. Conclusions and Future Work.

MOTIVATION (BOREHOLE LOGGING)

Deviated Wells (Forward Problem)

Dip Angle Invasion Anisotropy **Triaxial Induction Eccentricity** Laterolog **Through-Casing** Induction-LWD **Induction-Wireline Inverse Problems Multi-Physics**

Objective: Find solution at the receiver antennas.

3

D. Pardo, M. J. Nam, C. Torres-Verdín, M. Paszynski

2 Jul 2008

Objective: Find solution at the receiver antennas.

The University of Texas at Austin

4 For more info, visit: www.ices.utexas.edu/~pardo

MATHEMATICAL FORMULATION (3D)

3D Variational Formulation

Time-Harmonic Maxwell's Equations

 $\nabla \times H = \mathring{\sigma}E + J^{imp}$ Ampere's law ($\mathring{\sigma} = \sigma + j\omega\epsilon$) $\nabla \times E = \mathring{\mu}H + M^{imp}$ Faraday's law ($\mathring{\mu} = -j\omega\mu$) $\nabla \cdot (\epsilon E) = \rho$ Gauss' law of Electricity $\nabla \cdot (\mu H) = 0$ Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathbf{E} \in \mathbf{E}_{\Gamma_{E}} + \boldsymbol{H}_{\Gamma_{E}}(\operatorname{curl}; \Omega)$$
 such that:
 $\langle \nabla \times \mathbf{F}, \mathring{\mu}^{-1} \nabla \times \mathbf{E} \rangle_{L^{2}(\Omega)} - \langle \mathbf{F}, \mathring{\sigma} \mathbf{E} \rangle_{L^{2}(\Omega)} = \langle \mathbf{F}, \mathbf{J}^{imp} \rangle_{L^{2}(\Omega)}$
 $- \langle \mathbf{F}_{t}, \mathbf{J}_{\Gamma_{H}}^{imp} \rangle_{L^{2}(\Gamma_{H})} + \langle \nabla \times \mathbf{F}, \mathring{\mu}^{-1} \mathbf{M}^{imp} \rangle_{L^{2}(\Omega)} \quad \forall \mathbf{F} \in \boldsymbol{H}_{\Gamma_{E}}(\operatorname{curl}; \Omega)$

Example: Solution in a 60-degree deviated well ($-\nabla \sigma \nabla u = f$)

Several hours to obtain one solution (3D forward simulation). Several months needed to solve the inverse problem.

6

D. Pardo, M. J. Nam, C. Torres-Verdín, M. Paszynski

FOURIER ANALYSIS

Dimensionality Reduction for Maxwell's Equations Solving a 3D problem is CPU time and memory intensive. In some cases, we may reduce the complexity of the problem by using Fourier analysis.

7

Borehole Problems

Cylindrical Coordinates

Fourier Series Expansion

X-Well, CSEM Problems

Cartesian Coordinates

Fourier Transform

$$\mathrm{E}(\phi) := rac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^\infty \mathcal{F}_n(\mathrm{E}) e^{jn\phi}$$

$$\mathrm{E}(x_1):=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathcal{F}_r(\mathrm{E})e^{jrx_1}dx_1\,.$$

Fourier Series Expansion

Fourier series expansion

Inverse Fourier series expansion

$$\mathcal{F}_n(\mathrm{E}):=rac{1}{\sqrt{2\pi}}\int_0^{2\pi}\mathrm{E}(\phi)e^{-jn\phi}d\phi \quad ; \quad \mathrm{E}(\phi)=rac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^\infty\mathcal{F}_n(\mathrm{E})e^{jn\phi}.$$

Main properties

• Compatibility with differentiation $\mathcal{F}_n(rac{\partial \mathrm{E}}{\partial \phi}) = jn \mathcal{F}_n(\mathrm{E})$:

$$\mathcal{F}_n(\mathbf{\nabla} \times \mathbf{E}) = \mathbf{\nabla}^n \times (\mathcal{F}_n(\mathbf{E})),$$

where

$$abla^n imes \mathrm{E} := \left(rac{jnE_z}{
ho} - rac{\partial E_\phi}{\partial z}, rac{\partial E_
ho}{\partial z} - rac{\partial E_z}{\partial
ho}, rac{1}{
ho}rac{\partial (
ho E_\phi)}{\partial
ho} - rac{jnE_
ho}{
ho}
ight),$$

• *L*₂-Orthogonality:

$$rac{1}{\sqrt{2\pi}}\int_{0}^{2\pi}e^{jn\phi}e^{-jm\phi}d\phi=\sqrt{2\pi}\delta_{nm}$$

8

Fourier Transform

Fourier transform

Inverse Fourier transform

$$\mathcal{F}_r(\mathrm{E}):=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathrm{E}(x)e^{-jrx}dx \quad ; \quad \mathrm{E}(x)=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathcal{F}_r(\mathrm{E})e^{jrx}dr.$$

Main properties

• Compatibility with differentiation $\mathcal{F}_r(rac{\partial \mathrm{E}}{\partial x}) = jr \mathcal{F}_r(\mathrm{E})$:

$$\mathcal{F}_r(\mathbf{
abla} imes \mathrm{E}) = \mathbf{
abla}^r imes (\mathcal{F}_r(\mathrm{E})),$$

where

$$abla^r imes \mathrm{E}:=\left(rac{\partial E_z}{\partial y}-rac{\partial E_y}{\partial z},rac{\partial E_x}{\partial z}-jrE_z,jrE_y-rac{\partial E_x}{\partial y}
ight),$$

• *L*₂-Orthogonality:

$$rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{jrx}e^{-jsx}=\sqrt{2\pi}\delta_{sr}\;.$$

9

E-Variational Formulations (Cylindrical Coordinates)

FINITE ELEMENT — 3D—:

$$\begin{cases} \mathsf{Find} \ \mathrm{E} \in \mathrm{E}_{\Gamma_E} + \boldsymbol{H}_{\Gamma_E}(\mathrm{curl};\Omega) \ \mathsf{such that:} \\ \left\langle \boldsymbol{\nabla} \times \mathrm{F}, \mathring{\mu}^{-1} \boldsymbol{\nabla} \times \mathrm{E} \right\rangle_{L^2(\Omega)} - \left\langle \mathrm{F}, \mathring{\sigma} \mathrm{E} \right\rangle_{L^2(\Omega)} = \left\langle \mathrm{F}, \mathrm{J}^{imp} \right\rangle_{L^2(\Omega)} \\ - \left\langle \mathrm{F}_t, \mathrm{J}_{\Gamma_H}^{imp} \right\rangle_{L^2(\Gamma_H)} + \left\langle \boldsymbol{\nabla} \times \mathrm{F}, \mathring{\mu}^{-1} \mathrm{M}^{imp} \right\rangle_{L^2(\Omega)} \ \forall \ \mathrm{F} \in \boldsymbol{H}_{\Gamma_E}(\mathrm{curl};\Omega) \end{cases}$$

FOURIER FINITE ELEMENT — 3D = Sequence of Coupled 2D Problems—:

$$\begin{split} & \mathsf{Find} \ \mathsf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_n(\mathsf{E}) \ e^{jn\phi}, \text{where for each } n: \\ & \mathcal{F}_n(\mathsf{E}) \in \mathcal{F}_n(\mathsf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}), \text{ and} \\ & \sum_{m=-\infty}^{\infty} \left\langle \nabla^n \times \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \nabla^m \times \mathcal{F}_m(\mathsf{E}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\sigma}) \mathcal{F}_m(\mathsf{E}) \right\rangle_{L^2(\Omega_{2D})} \\ & = \left\langle \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_n(\mathsf{J}^{imp}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathsf{F}_t) \ , \ \mathcal{F}_n(\mathsf{J}^{imp}_S) \right\rangle_{L^2(\Gamma_{H,1D})} \\ & + \sum_{m=-\infty}^{\infty} \left\langle \nabla^n \times \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \mathcal{F}_m(\mathsf{M}^{imp}) \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ \mathcal{F}_n(\mathsf{F}) \in H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}) \end{split}$$

E-Variational Formulations (Cylindrical Coordinates)

Assumption: For
$$n \neq m$$
 we assume $\mathcal{F}_{n-m}(\mathring{\mu}^{-1}) = \mathcal{F}_{n-m}(\mathring{\sigma}^{-1}) = 0$.

FOURIER FINITE ELEMENT —2.5D = Sequence of Uncoupled 2D Problems—:

$$\begin{split} & \mathsf{Find} \ \mathbf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_n(\mathbf{E}) \ e^{jn\phi}, \text{where for each } n: \\ & \mathcal{F}_n(\mathbf{E}) \in \mathcal{F}_n(\mathbf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\mathrm{curl}^n;\Omega_{2D}), \text{ and} \\ & \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\mu}^{-1}) \nabla^n \times \mathcal{F}_n(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\sigma}) \mathcal{F}_n(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} \\ & = \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathbf{J}^{imp}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}_t) \ , \ \mathcal{F}_n(\mathbf{J}_S^{imp}) \right\rangle_{L^2(\Gamma_{H,1D})} \\ & + \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\mu}^{-1}) \mathcal{F}_n(\mathbf{M}^{imp}) \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ \mathcal{F}_n(\mathbf{F}) \in H_{\Gamma_{E,1D}}(\mathrm{curl}^n;\Omega_{2D}) \end{split}$$

EXAMPLE OF 2.5D TRIAXIAL INDUCTION LWD PROBLEM

EXAMPLE OF 2.5D TRIAXIAL INDUCTION LWD PROBLEM

EXAMPLE OF 2.5D TRIAXIAL INDUCTION LWD PROBLEM

2D Variational Formulation (Axi-symmetric Problems)

If we further assume that $\mathcal{F}_n(J^{imp}) = \mathcal{F}_n(J_S^{imp}) = \mathcal{F}_n(M^{imp}) = 0 \quad \forall n \neq 0$, then we obtain one uncoupled 2D problem. Now, $E = \mathcal{F}_0(E)$.

 E_{ϕ} -Variational Formulation (Azimuthal)

Find
$$E_{\phi} \in E_{\phi,D} + \tilde{H}_{D}^{1}(\Omega)$$
 such that:
 $\left\langle \nabla \times F_{\phi}, \mathring{\mu}_{\rho,z}^{-1} \nabla \times E_{\phi} \right\rangle_{L^{2}(\Omega_{2D})} - \left\langle F_{\phi}, \mathring{\sigma}_{\phi} E_{\phi} \right\rangle_{L^{2}(\Omega_{2D})} = \left\langle F_{\phi}, J_{\phi}^{imp} \right\rangle_{L^{2}(\Omega_{2D})}$
 $- \left\langle F_{\phi}, J_{\phi,\tilde{\Gamma}_{H}}^{imp} \right\rangle_{L^{2}(\tilde{\Gamma}_{H})} + \left\langle F_{\phi}, \mathring{\mu}_{\rho,z}^{-1} \mathcal{M}_{\rho,z}^{imp} \right\rangle_{L^{2}(\Omega_{2D})} \quad \forall F_{\phi} \in \tilde{H}_{D}^{1}(\Omega)$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

$$\begin{cases} \mathsf{Find} \ \mathrm{E}_{\rho,z} = (E_{\rho}, E_z) \in \mathrm{E}_D + \tilde{H}_D(\mathrm{curl}; \Omega) \text{ such that:} \\ \left\langle \nabla \times \mathrm{F}_{\rho,z}, \mathring{\mu}_{\phi}^{-1} \nabla \times \mathrm{E}_{\rho,z} \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathrm{F}_{\rho,z}, \mathring{\sigma}_{\rho,z} \mathrm{E}_{\rho,z} \right\rangle_{L^2(\Omega_{2D})} = \\ \left\langle \mathrm{F}_{\rho,z}, \mathrm{J}_{\rho,z}^{imp} \right\rangle_{L^2(\Omega_{2D})} - \left\langle (\mathrm{F}_{\rho,z})_t, \mathrm{J}_{\rho,z,\tilde{\Gamma}_H}^{imp} \right\rangle_{L^2(\tilde{\Gamma}_H)} \\ + \left\langle \mathrm{F}_{\rho,z}, \mathring{\mu}_{\phi}^{-1} \mathrm{M}_{\phi}^{imp} \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ (F_{\rho}, F_z) \in \tilde{H}_D(\mathrm{curl}; \Omega) \end{cases}$$

2D Formulations

2D problem with casing at 10 Hz.

 E_{ϕ} Formulation

Quantity of Interest	Real Part	Imag Part
GRID 1	0.1516098429E-08	-0.1456374493E-08
GRID 2	0.1516094029E-08	-0.1456390824E-08

$E_{\rho,z}$ Formulation

Quantity of Interest	Real Part	Imag Part
GRID 3	0.1516060872E-08	-0.1456337248E-08
GRID 4	0.1516093804E-08	-0.1456390864E-08

The two formulations can be employed as a verification method (and perhaps an an error control method).

DEVIATED WELLS

E-Variational Formulations (Cylindrical Coordinates)

FINITE ELEMENT — 3D—:

$$\begin{cases} \mathsf{Find} \ \mathrm{E} \in \mathrm{E}_{\Gamma_E} + H_{\Gamma_E}(\mathrm{curl};\Omega) \ \mathsf{such that:} \\ \langle \nabla \times \mathrm{F}, \mathring{\mu}^{-1} \nabla \times \mathrm{E} \rangle_{L^2(\Omega)} - \langle \mathrm{F}, \mathring{\sigma} \mathrm{E} \rangle_{L^2(\Omega)} = \langle \mathrm{F}, \mathrm{J}^{imp} \rangle_{L^2(\Omega)} \\ - \left\langle \mathrm{F}_t, \mathrm{J}_{\Gamma_H}^{imp} \right\rangle_{L^2(\Gamma_H)} + \left\langle \nabla \times \mathrm{F}, \mathring{\mu}^{-1} \mathrm{M}^{imp} \right\rangle_{L^2(\Omega)} \ \forall \ \mathrm{F} \in H_{\Gamma_E}(\mathrm{curl};\Omega) \end{cases}$$

FOURIER FINITE ELEMENT — 3D = Sequence of Coupled 2D Problems—:

$$\begin{split} & \mathsf{Find} \ \mathsf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_n(\mathsf{E}) \ e^{jn\phi}, \text{where for each } n: \\ & \mathcal{F}_n(\mathsf{E}) \in \mathcal{F}_n(\mathsf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}), \text{ and} \\ & \sum_{m=-\infty}^{\infty} \left\langle \nabla^n \times \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \nabla^m \times \mathcal{F}_m(\mathsf{E}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\sigma}) \mathcal{F}_m(\mathsf{E}) \right\rangle_{L^2(\Omega_{2D})} \\ & = \left\langle \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_n(\mathsf{J}^{imp}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathsf{F}_t) \ , \ \mathcal{F}_n(\mathsf{J}^{imp}_S) \right\rangle_{L^2(\Gamma_{H,1D})} \\ & + \sum_{m=-\infty}^{\infty} \left\langle \nabla^n \times \mathcal{F}_n(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \mathcal{F}_m(\mathsf{M}^{imp}) \right\rangle_{L^2(\Omega_{2D})} \ \forall \ \mathcal{F}_n(\mathsf{F}) \in H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}) \end{split}$$

DEVIATED WELLS

Cartesian system of coordinates: x = (x, y, z). New non-orthogonal system of coordinates: $\zeta = (\zeta_1, \zeta_2, \zeta_3)$.

Subdomain I;Subdomain II;Subdomain III $\begin{cases} x = \zeta_1 \cos \zeta_2 \\ y = \zeta_1 \sin \zeta_2 \\ z = \zeta_3 \end{cases}$; $\begin{cases} x = \zeta_1 \cos \zeta_2 \\ y = \zeta_1 \sin \zeta_2 \\ z = \zeta_3 + \tan \theta_0 \frac{\zeta_1 - \rho_1}{\rho_2 - \rho_1} \rho_2 \end{cases}$;; $\begin{cases} x = \zeta_1 \cos \zeta_2 \\ y = \zeta_1 \sin \zeta_2 \\ z = \zeta_3 + \tan \theta_0 \zeta_1 \end{vmatrix}$;

DISCRETIZATION

2D Finite Elements + 1D Fourier

3D Problem (using a Fourier Finite Element Method):

- H(curl) (Nedelec elements) for the meridian components ($E_{\rho,z}$), and
- H^1 (Lagrange elements) for the azimuthal component (E_{ϕ}).

2.5D Problem (using a Fourier Finite Element Method):

- $H(\operatorname{curl})$ (Nedelec elements) for the meridian components ($\operatorname{E}_{\rho,z}$), and
- H^1 (Lagrange elements) for the azimuthal component (E_{ϕ}).

2D Problem:

- $H(\operatorname{curl})$ (Nedelec elements) in terms of the meridian components ($\operatorname{E}_{\rho,z}$), or
- H^1 (Lagrange elements) in terms of the azimuthal component (E_{ϕ}).

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

DISCRETIZATION

Algorithm for Goal-Oriented Adaptivity

Compute $e = \Psi_{h/2,p+1} - \Psi_{hp}$, and $\tilde{e} = \Psi_{h/2,p+1} - \Pi_{hp}\Psi_{h/2,p+1}$. Compute $\epsilon = G_{h/2,p+1} - G_{hp}$, and $\tilde{\epsilon} = G_{h/2,p+1} - \Pi_{hp}G_{h/2,p+1}$. $|L(e)| = |b(e,\epsilon)| \sim |b(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} |b_{K}(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} ||\tilde{e}||_{E,K} ||\tilde{\epsilon}||_{E,K}$.

Apply the fully automatic hp-adaptive algorithm.

2 Jul 2008

23

DISCRETIZATION

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m

24

DISCRETIZATION

Goal-Oriented vs. Energy-norm *hp***-Adaptivity**

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-Norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

2 Jul 2008

D. Pardo, M. J. Nam, C. Torres-Verdín, M. Paszynski

DISCRETIZATION

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

The University of Texas at Austin

2 Jul 2008

2 Jul 2008

PARALLEL IMPLEMENTATION

PARALLEL IMPLEMENTATION

Scalability of the Parallel Multi-Frontal Solver

Parallel computations performed on Texas Advanced Computing Center (TACC) 60 % relative efficiency up to 200 processors. Parallel solver is 125 times faster on 200 processors.

D. Pardo, M. J. Nam, C. Torres-Verdín, M. Paszynski

CONCLUSIONS

- A Fourier-Finite-Element method provides a suitable formulation for most frequency domain EM geophysical applications.
- The Fourier-Finite-Element method leads to discretizations based on mixed (H(curl) and H^1) spaces.
- Spectral methods combined with adaptive refinements enable exponential rates of convergence.
- Goal-oriented refinements are essential in EM geophysical applications due to the dissipative nature of the earth.
- A parallel implementation based on a shared domain-decomposition is simple and provides acceptable scalability (over 50%) for a moderate number of processors.

Department of Petroleum and Geosystems Engineering

2 Jul 2008

ACKNOWLEDGMENTS

Sponsors of UT Austin's consortium on Formation Evaluation

