Joint Industry Research Consortium on Formation Evaluation

Self-Adaptive Goal-Oriented *hp*-Finite Element Simulations of Induction and Laterolog Measurements in the Presence of Steel Casing"

> David Pardo (dzubiaur@yahoo.es), C. Torres-Verdin, L. Demkowicz, L. Tabarovsky

Collaborators: Science Department of Baker-Hughes, J. Kurtz, M. Paszynski, D. Xue (Cynthia)

August 17, 2005

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

OVERVIEW

1. Motivation

2. Numerical Methodology

- *hp*-Finite Elements (Exponential convergence)
- Automatic Goal-Oriented Refinements (in the quantity of interest)

3. Current Stage of the 2D High Performance FE Software

- Flexibility
- Reliability
- Accuracy
- Performance

4. Simulations in Presence of Metal Casing of:

- Induction Instruments
- Laterolog Measurements
- 5. Conclusions and Future Work

17 Aug 2005

MOTIVATION

First Vert. Diff. H_{ϕ} for different antennas

In LWD instruments, we obtain similar results using toroids or a ring of vert. dipoles

The University of Texas at Austin

High Performance Finite Element Software

First Vert. Diff. E_z for a toroid antenna

Toroids are adequate for identifying highly resistive layers

First Vert. Diff. E_{ϕ} for a solenoid antenna

Solenoids are adequate for identifying low resistive layers

Use of Magnetic Buffers (E_{ϕ} for a solenoid)

Use of magnetic buffers strengthen the signal in combination with solenoids

Use of Magnetic Buffers (H_{ϕ} for a toroid)

However, magnetic buffers weaken the signal in combination with toroids

Invasion study (E_{ϕ} for a solenoid)

Large invasion effects can be sensed using solenoids

Invasion study (H_{ϕ} for a toroid)

Small invasion effects can be sensed using toroids

Invasion study (E_{ϕ} for a solenoid)

Invasion in resistive layers cannot be sensed using solenoids

Invasion study (H_{ϕ} for a toroid)

Invasion in resistive layers should be studied using toroids

Invasion and mandrel magnetic permeab. (E_{ϕ})

The effect of magnetic permeability on the mandrel is similar to the effect of magnetic buffers

Anisotropy (H_{ϕ})

Anisotropy effects may be important when studying resistive layers

17 Aug 2005

MOTIVATION

The University of Texas at Austin

High Performance Finite Element Software

17 Aug 2005

MOTIVATION

Variations due to water ivasion are large

The University of Texas at Austin

17 Aug 2005

MOTIVATION

Variations due to water ivasion are large

The University of Texas at Austin

17 Aug 2005

MOTIVATION

Variations due to water ivasion are large

The University of Texas at Austin

MOTIVATION

Casing resistivity can be analyzed from different frequency measurements

RESISTIVITY LOGGING PROBLEMS

Type of Problems We Can Solve with 2Dhp90 (v.7.2)

Physical Devices	Magnetic Buffers	Insulators	Displacement Currents
	Casing	Casing Imperfections	Combination of all
Materials	Isotropic	Anisotropic*	
Sources	Toroidal Antennas	Solenoidal Antennas	Dipoles in Any Direction
	Electrodes	Finite Size Antennas	Combination of All
Logging Instruments	LWD/MWD	Laterolog	Normal
	Induction	Dielectric Instruments	Cross-well
Frequency	0-10 Ghz.		
Invasion	Water	Oil	etc.

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

THE hp-FINITE ELEMENT METHOD

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

GOAL-ORIENTED ADAPTIVITY

Movie Presentation (Sensitivity Functions)

We want to study resolution and depth of investigation of a logging instrument.

We have:
$$|L(\Psi)| = |\int S \ dV| \leq \int |S| \ dV.$$

In the next movies, we display: $\log_{10} |S|$.

Scales:

- ullet Red $ightarrow |S| = |L(\Psi)| * 10^4$.
- Blue $ightarrow |S| = |L(\Psi)| * 10^{-2}$.

Direct Current

Algorithm for Goal-Oriented Adaptivity

Compute $e = \Psi_{h/2,p+1} - \Psi_{hp}$, and $\tilde{e} = \Psi_{h/2,p+1} - \Pi_{hp}\Psi_{h/2,p+1}$. Compute $\epsilon = G_{h/2,p+1} - G_{hp}$, and $\tilde{\epsilon} = G_{h/2,p+1} - \Pi_{hp}G_{h/2,p+1}$. $|L(e)| = |b(e,\epsilon)| \sim |b(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} |b_{K}(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} ||\tilde{e}||_{E,K} ||\tilde{\epsilon}||_{E,K}$.

Apply the fully automatic hp-adaptive algorithm.

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m

Goal-Oriented vs. Energy-norm *hp***-Adaptivity**

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

Flexibility (What Problems Can We Solve?)

Time-Harmonic Maxwell's Equations

$ abla imes \mathrm{H} = (ar{ar{\sigma}} + j\omegaar{ar{\epsilon}})\mathrm{E} + \mathrm{J}^{imp}$	Ampere's law
${f abla} imes { m E} = -j\omegaar{ar{\mu}}{ m H} - { m M}^{imp}$	Faraday's law
${oldsymbol abla} \cdot (ar{ar \epsilon} { m E}) = ho$	Gauss' law of Electricity
${f abla}\cdot (ar{ar{\mu}}{ m H})=0$	Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathrm{E} \in \mathrm{E}_D + H_D(\mathrm{curl};\Omega)$$
 such that:
 $\int_{\Omega} (\bar{\bar{\mu}}^{-1} \nabla \times \mathrm{E}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV - \int_{\Omega} (\bar{\bar{k}}^2 \mathrm{E}) \cdot \bar{\mathrm{F}} \, dV = -j\omega \int_{\Omega} \mathrm{J}^{imp} \cdot \bar{\mathrm{F}} \, dV$
 $+j\omega \int_{\Gamma_N} \mathrm{J}^{imp}_{\Gamma_N} \cdot \bar{\mathrm{F}}_t \, dS - \int_{\Omega} (\bar{\bar{\mu}}^{-1} \mathrm{M}^{imp}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV \ \forall \, \mathrm{F} \in H_D(\mathrm{curl};\Omega)$

Flexibility (What Problems Can We Solve?) AXISYMMETRIC PROBLEMS

 E_{ϕ} -Variational Formulation (Azimuthal)

 $\left\{egin{aligned} & \mathsf{Find}\ E_\phi \in E_{\phi,D} + ilde{H}_D^1(\Omega)\ \mathsf{such\ that:} \ & \int_\Omega (ar{\mu}_{
ho,z}^{-1}
abla imes \mathbf{E}_\phi) \cdot (
abla imes ar{\mathbf{F}}_\phi)\ dV - \int_\Omega (ar{k}_\phi^2 \mathbf{E}_\phi) \cdot ar{\mathbf{F}}_\phi\ dV = -j\omega \int_\Omega J_\phi^{imp}\ ar{F}_\phi\ dV \ & +j\omega \int_{\Gamma_N} J_{\phi,\Gamma_N}^{imp}\ ar{F}_\phi\ dS - \int_\Omega (ar{\mu}_{
ho,z}^{-1} \mathbf{M}_{
ho,z}^{imp}) \cdot ar{\mathbf{F}}_\phi\ dV \quad \forall\ F_\phi \in ilde{H}_D^1(\Omega) \end{aligned}
ight.$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

Find
$$(E_{
ho}, E_z) \in E_D + \tilde{H}_D(\operatorname{curl}; \Omega)$$
 such that:

$$\int_{\Omega} (\bar{\mu}_{\phi}^{-1} \nabla \times E_{\rho,z}) \cdot (\nabla \times \bar{F}_{\rho,z}) \, dV - \int_{\Omega} (\bar{k}_{\rho,z}^{2} E_{\rho,z}) \cdot \bar{F}_{\rho,z} \, dV =$$

$$-j\omega \int_{\Omega} J_{\rho}^{imp} \bar{F}_{\rho} + J_{z}^{imp} \bar{F}_{z} \, dV + j\omega \int_{\Gamma_N} J_{\rho,\Gamma_N}^{imp} \bar{F}_{\rho} + J_{z,\Gamma_N}^{imp} \bar{F}_{z} \, dS$$

$$-\int_{\Omega} (\bar{\mu}_{\phi}^{-1} M_{\phi}^{imp}) \cdot \bar{F}_{\rho,z} \, dV \quad \forall (F_{\rho}, F_{z}) \in \tilde{H}_D(\operatorname{curl}; \Omega)$$

Flexibility (What Problems Can We Solve?)

- Physical Devices: Casing, Casing Imperfections, Mandrel, Magnetic Buffers, Insulators, Displacement Currents, Combination of All, etc.
- Materials: Isotropic, Anisotropic*.
- Sources: Toroidal Antennas, Solenoidal Antennas, Dipoles in Any Direction, Electrodes, Finite Size Antennas, Combination of All, etc.
- Logging Instruments: Logging While Drilling (LWD), Laterolog, Normal, Induction, Dielectric Instruments, Cross-well, etc.
- Any Frequency (0-10 Ghz).

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with a mandrel.
- 3. Exact solution in a homogeneous media with casing.
- Verification of Physical Properties.
 - 1. Reciprocity principle (Gregory Itskovich).
 - 2. Discrete divergence free approximation for edge elements.
- Numerical Verifications.
 - 1. Different size of domain and antennas.
 - 2. Comparison against other numerical software (Yang Wei).
 - **3. Error control provided by the fine grid solution.**
 - 4. Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Error control provided by the fine grid solution.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with a mandrel.
- 3. Exact solution in a homogeneous media with casing.
- Verification of Physical Properties.
 - 1. Reciprocity principle (Gregory Itskovich).
 - 2. Discrete divergence free approximation for edge elements.
- Numerical Verifications.
 - 1. Different size of domain and antennas.
 - 2. Comparison against other numerical software (Yang Wei).
 - 3. Error control provided by the fine grid.
 - 4. Comparison between continuous elements vs. edge elements.

HIGHLY RELIABLE SOFTWARE

Performance (How Fast Can We Solve the Problems?)

80 Vert. Pos.	$10^{-6} \Omega \cdot m$	$10^{-5} \Omega \cdot m$
Toroid (10 Khz)	19' 46"	16' 28"
Ring of Vert. Dipoles (10 Khz)	22' 47"	17' 02"
Ring of Horiz. Dipoles (10 Khz)	19' 25"	13' 25"
Electrodes (0 Hz)	10' 10"	8' 35"

IBM Power 4 compiler 1.3 Ghz (4 years old)

Possible improvements in performance:

- To use a 3.4 Ghz processor.
- To execute the code in 8 processors (10 positions per processor).
- To improve implementation.

HIGH PERFORMANCE SOFTWARE

List of Four Model Problems Solved with 2Dhp90 (v.7.2)

- Problem I: Through Casing Resistivity Tool (TCRT). Study of water invasion in an oil-based formation.
- Problem II: Study of oil invasion on an anisotropic formation with laminated sands.
- Problem III: Detection of oil-water contact below the position of an induction logging instrument.
- Problem IV: Through Casing Resistivity Tool (TCRT). Study of anisotropy and water invasion effects on a model formation typical from the Gulf of Mexico.

17 Aug 2005

SIMULATION OF LOGGING INSTRUMENTS

Variations due to frequency are small (below 5%)

Water invasion through casing can be accurately assessed

Water invasion through casing can be accurately assessed

Water invasion through casing can be accurately assessed

Mandrel Through Casing provides meaningless results

Anisotropy effects are significant. Frequency variations are below 10%

Accurate software is needed for water invasion assessment

Study of anisotropy and frequency effects require from high accuracy simulations

Variations due to invasion are below 20%.

CONCLUSIONS AND FUTURE WORK

- The self-adaptive goal-oriented *hp*-adaptive strategy converges exponentially in terms of a user-prescribed quantity of interest vs. the CPU time.
- It is possible to simulate a variety of EM logging instruments by using the self-adaptive goal-oriented *hp*-FEM.
 - The software can be utilized to simulate ALL axisymmetric resistivity logging instruments in possibly cased wells.
 - Furthermore, by using 2Dhp90, we can accurately describe the effect of water/oil-based mud invasion, anisotropy, magnetic buffers, etc.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

FUTURE WORK

Simulation of 3D Resistivity Logging Problems

- PROJECT I: Simulate 3D DC and AC Resistivity Logging Problems.
 - Main challenge: To Perform Fast Large Computations.
 - Expected results: Similar results as in 2D.
- PROJECT II: Invert 2D Multi-Physic Problems.
 - Main challenge: To deal with different physics.
 - Expected results: Similar results as in 2D.

17 Aug 2005

