Joint Industry Research Consortium on Formation Evaluation

Integrated Approach Toward Formation Evaluation Using an *hp*-Adaptive Goal-Oriented Finite Element Formulation

D. Pardo, M. Paszynski, C. Michler, C. Torres-Verdín, L. Demkowicz

Collaborators: J. Kurtz, W. Rachowicz, A. Zdunek, L.E. García-Castillo

August 17, 2006

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

THE UNIVERSITY OF TEXAS AT AUSTIN

What software can we use?

A Self-Adaptive Goal-Oriented hp-Finite Element Method

MAIN ADVANTAGES

- 1. It supports multi-physics.
- 2. It supports 2D and 3D computations.
- 3. It automatically generates optimal grids with few unknowns.
- 4. It provides error estimation *guaranteed accuracy*.
- 5. It is suitable for high-contrast problems.
- 6. Integrated effort.

MAIN DRAWBACKS

- 1. It is complex (mathematically involved).
- 2. It is large (> 100.000 lines of code).
- 3. 3D computations are time and memory consuming.

2D and 3D Resistivity Logging (Electromagnetics)

2D hp-mesh **3D TCRT Solution (Dip Angle = 60 degrees)**

The University of Texas at Austin

INTEGRATED APPROACH TOWARD FORMATION EVALUATION

2D Sonic Logging (Acoustics/Elasticity)

Final Solution

Work Plan

- 1. 2D DC simulator (2004).
- 2. 2D AC simulator (2005).
- 3. 3D parallel DC simulator (2006).
- 4. 2D sonic simulator (2006).
- 5. 3D parallel AC simulator (2007).
- 6. 2D inverse DC-AC simulator (2007-2008).
- 7. 2D AC-sonic inverse simulator (2008).

Type of Problems We Can Solve with 2Dhp90 (v. 8.0)

Physical Devices	Magnetic Buffers	Insulators	Displacement Currents
	Casing	Casing Imperfections	Combination of all
Materials	Isotropic	Anisotropic*	
Sources	Toroidal Antennas	Solenoidal Antennas	Dipoles in Any Direction
	Electrodes	Finite Size Antennas	Combination of All
Logging Instruments	LWD/MWD	Laterolog	Normal
	Induction	Dielectric Instruments	Cross-well Marine EM
Frequency	0-10 Ghz.		
Invasion	Water	Oil	etc.

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

The University of Texas at Austin

Joint Industry Research Consortium on Formation Evaluation

Numerical Simulation of 3D DC Borehole Resistivity Measurements Using an *hp*-Adaptive Goal-Oriented Finite Element Formulation

D. Pardo, M. Paszynski, C. Torres-Verdín, L. Demkowicz

Collaborators: Science Department of Baker-Hughes, C. Michler,

J. Kurtz, W. Rachowicz, A. Zdunek, L.E. García-Castillo

August 17, 2006

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

THE UNIVERSITY OF TEXAS AT AUSTIN

OVERVIEW

1. Numerical Methodology

- *hp*-Finite Elements (Exponential convergence)
- Automatic Goal-Oriented Refinements (in the quantity of interest)
- Multi-grid (iterative) solver of linear equations.
- 2. Current Stage of the 3D DC hp-FE Software
- **3. Numerical Simulations of 3D DC:**
 - Laterolog Measurements
 - LWD Measurements (at DC)
- 4. Conclusions and Future Work

The University of Texas at Austin

Objective: Determine 2nd difference of potential at the receiver antennas.

The University of Texas at Austin

Model Problem with Steel Casing

THROUGH CASING RESISTIVITY INSTRUMENTS

Axisymmetric problem

THROUGH CASING RESISTIVITY INSTRUMENTS

Axisymmetric problem

THROUGH CASING RESISTIVITY INSTRUMENTS

Axisymmetric problem

Axisymmetric problem

The University of Texas at Austin

4

The University of Texas at Austin

5

THROUGH CASING RESISTIVITY INSTRUMENTS

60 degrees deviated well

60 degrees deviated well

60 degrees deviated well

THROUGH CASING RESISTIVITY INSTRUMENTS

60 degrees deviated well

The University of Texas at Austin

6

THE hp-FINITE ELEMENT METHOD (FEM)

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- 1. Exponential convergence feasible for ALL solutions.
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

GOAL-ORIENTED ADAPTIVITY Mathematical Formulation (Goal-Oriented Adaptivity) DIRECT PROBLEM - Ψ -**DUAL PROBLEM - G -2D Cross-Section 2D Cross-Section**

Representation Formula for the Error in the Quantity of Interest: $L(\Psi)=b(\Psi,G) = \int_{\Omega} \sigma \nabla \Psi \nabla G dV \text{ (electrostatics)}$

8

Algorithm for Goal-Oriented Adaptivity - STEP I -

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal *hp*-grid:

Algorithm for Goal-Oriented Adaptivity - STEP II -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal *hp*-grid:

Algorithm for Goal-Oriented Adaptivity - STEP III -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Algorithm for Goal-Oriented Adaptivity - STEP IV -

Solve Direct and Dual Problems on Grid hp

Use the fine grid solution to estimate the coarse grid error function. Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal *hp*-grid:

GOAL-ORIENTED TWO-GRID SOLVER

Multigrid (two-grid) Solver (Ax=b)

Fine Grid Smoothing Fine Grid Smoothing (Sol. Local Problems) (Sol. Local Problems) **Coarse Grid Correction (Sol. Global Problem) V-cycle**

The University of Texas at Austin

GOAL-ORIENTED TWO-GRID SOLVER

Challenges (Iterative Solver)

The use of goal-oriented adaptivity. A new strategy for selecting the optimal relaxation parameter has been implemented. This strategy minimizes the error in the quantity of interest rather than in the energy-norm.

The presence of (arbitrary) elongated elements. An additional edge-based (global) smoother has been implemented. This additional smoother makes the convergence of the iterative solver independent of the aspect ratio of the elements.

Convergence theory for elongated elements. Under development.

GOAL-ORIENTED TWO-GRID SOLVER

Axisymmetric Model Problem (solved in 3D)

MEMORY

TIME

Iterative solvers are needed for simulation of 3D resistivity logging applications

LATEROLOG INSTRUMENTS

Electrode Problem

The University of Texas at Austin

LATEROLOG INSTRUMENTS

Electrode Problem

Final hp-grid

Final solution

17 Aug 2006

2D Solution: 0.078131

3D Solution: 0.078121

LATEROLOG INSTRUMENTS

Axisymmetric Model Problem

- Borehole and four materials on the formation.
- Size of computational domain: 100 m \times 100 m.
- Size of electrode: 0.05 m \times 0.05 m.
- Objective: Compute First Vertical Difference of Potential.

Axisymmetric Model Problem

The University of Texas at Austin

20

Axisymmetric Model Problem

- Borehole and four materials on the formation.
- Size of computational domain: 100 m \times 100 m.
- Size of electrode: 0.05 m \times 0.05 m.
- Objective: Compute First Vertical Difference of Potential.

The University of Texas at Austin

22

LATEROLOG INSTRUMENTS

Axisymmetric Model Problem

LATEROLOG INSTRUMENTS

Objective: Compute 2nd Diff. of Potential

LATEROLOG INSTRUMENTS

SIDE VIEW

Axisymmetric problem

LATEROLOG INSTRUMENTS

Deviated Well

Dip angle: 30 degrees

Deviated Well

Axisymmetric Problem

Deviated Well

Deviated Well

3

LATEROLOG INSTRUMENTS

Axisymmetric Problem

Deviated Well

Dip angle: 30 degrees.

Deviated Well

Dip angle: 60 degrees.

LATEROLOG INSTRUMENTS

Anisotropy in Deviated Wells

Axisymmetric problem

Deviated Well

Deviated Well

LWD (at DC)

Objective: Compute 2nd Diff. of Potential

The University of Texas at Austin

40

High Performance Finite Element Software

Axisymmetric problem

Deviated Well

Dip angle: 30 degrees

Deviated Well

Dip angle: 60 degrees

Axisymmetric Problem

Axisymmetric Problem. TX patch. RX patch.

LWD (at DC) **Deviated Well** Dip angle: 30 degrees. TX patch. RX patch. 3 • 2D --> 3D -- 30 degrees ---Receiver Electrodes (m) + 2D --> 3D (p+1) --30 degrees --2 0 Pos. -0.02 -0.01 0.01 0.02 0 2nd. Vert. Diff. of Potential (V)

Axisymmetric Problem

Deviated Well

Dip angle: 30 degrees.

Deviated Well

Dip angle: 60 degrees.

Anisotropy in Deviated Wells

Axisymmetric problem

D. Pardo, M. Paszynski, C. Torres-Verdín, L. Demkowicz

D. Pardo, M. Paszynski, C. Torres-Verdín, L. Demkowicz

CONCLUSIONS AND FUTURE WORK

Conclusions

- The 3D goal-oriented self-adaptive *hp*-Finite Element software provides reliable solutions (with guaranteed errors) for a variety of resistivity logging instruments, including laterolog and through casing resistivity tools.
- Within the framework of hp-Finite Elements, we are able to simulate multi-physics and multi-dimensional problems.

Future Work

- 3D AC simulator.
- Parallel iterative solver.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)

The University of Texas at Austin

D. Pardo, M. Paszynski, C. Torres-Verdín, L. Demkowicz

17 Aug 2006

The University of Texas at Austin

High Performance Finite Element Software