Partial Differential Equations, Optimal Control, and Numerics

Simulation of Resistivity and Sonic Borehole Logging Measurements Using hp Finite Elements

D. Pardo, P. Matuszyk, M.J. Nam, C. Torres-Verdín, V. M. Calo

Basque Center for Applied Mathematics (BCAM)

TEAM MEMBERS: D. Pardo (Research Professor) I. Garay (Postdoctoral Fellow) A.-G. Saint-Guirons (Postdoctoral Fellow) I. Andonegui (Technician)

MAIN COLLABORATORS: M. J. Nam, F. de la Hoz M. Paszynski, L.E. García-Castillo I. Gómez, C. Torres-Verdín P. Matuszyk, L. Demkowicz

1 Sep. 2009

For more info, visit: www.bcamath.org/research/mip

overview

- 1. Motivation.
- 2. Method.
- 3. Sonic Simulations.
- 4. Electromagnetic Simulations.
- 5. Inverse Problems.
- 6. Conclusions.

motivation and objectives

Multiphysics Logging Measurements

OBJECTIVES: To determine payzones (porosity), amount of oil/gas (saturation), and ability to extract oil/gas (permeability).

(bcam)

D. Pardo et. al.

motivation and objectives

Main Objective: To Solve a Multiphysics Inverse Problem

3

For more info, visit: www.bcamath.org/research/mip

method

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- **2.** Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

method

method

Refinement strategy

Notation:

- K is an element of the hp-grid.
- $E_C=E_{hp}$ (coarse grid) $\prec \ E_{\widehat{hp}} \ \prec \ E_F=E_{h/2,p+1}$ (fine grid).

The adaptive strategy maximizes the following quantity:

$$\widehat{hp} = arg \max_{\widetilde{hp}} \sum_{K} rac{|E_F - \Pi_{hp}^K E_F|_{?,K}^2 - |E_F - \Pi_{\widetilde{hp}}^K E_F|_{?,K}^2}{(N_{\widetilde{hp}} - N_{hp})^2},$$

where $\Pi_{hp}^{K} E_{F}$ is the projection based interpolation of solution E_{F} over the *K*-th element of the *hp* grid.

The choice of the semi-norm depends upon the space in which the solution lives $-H^1$, H(curl), H(div) or L^2 —.

(bcam) www.bcamath.org

method

Projection based interpolation

$$\Pi_{hp}^{K}E_{F}=E_{1}^{K,hp}+E_{2}^{K,hp}+E_{3}^{K,hp}.$$

- $E_1^{K,hp}$ is the "bilinear vertex interpolant" of the *K*-th element of the hp-grid.
- $E_2^{K,hp}$ is the "projection" of $E_F E_1^{K,hp}$ over each edge of the *K*-th element of the hp-grid.
- $E_3^{K,hp}$ is the "projection" of $E_F E_1^{K,hp} E_2^{K,hp}$ over the interior of the *K*-th element of the *hp*-grid.

The projection depends upon the space in which the solution lives $-H^1$, H(curl), H(div) or L^2 —.

Question: How can we combine energies coming from different norms/spaces?

method

De Rham diagram

De Rham diagram is critical to the theory of FE discretizations of multi-physics problems.

This diagram relates two exact sequences of spaces, on both continuous and discrete levels, and corresponding interpolation operators.

www.bcamath.org

(bcam)

method

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

 $\left\{ egin{array}{ll} {\sf Find}\ L(E), {\sf where}\ E\in V {
m ~such ~that}: \ b(E,\xi)=f(\xi) & orall \xi\in V {
m ~.} \end{array}
ight.$

We define residual $r_e(\xi) = b(e, \xi)$. We seek for solution *G* of:

 $\left\{ egin{array}{l} {\sf Find}\ G\in V''\sim V \ {\sf such \ that}: \ G(r_e)=L(e) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{ll} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(E,G)=L(E) & orall E\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

method

sonic simulations

• Acoustic domain: borehole fluid (c_f , ρ_f)

$$egin{cases} i\omega p+c_f^2
ho_f
abla\cdot v=0\ i\omega
ho_fv+
abla p=0 \end{cases}$$

• Elastic tool, casing, formation (V_p , V_s , ρ_s)

$$egin{aligned} 0 &=
abla \cdot \sigma +
ho_s \omega^2 u \ \sigma &= \lambda I
abla \cdot u + \mu (
abla u +
abla^T u) \ \lambda &=
ho_s (V_p^2 - 2V_s^2), \; \mu =
ho_s V_s^2 \end{aligned}$$

• Coupling:

(bcam)

$$egin{aligned} n_f \cdot
abla p &=
ho_f \omega^2 n_f \cdot u \ n_s \cdot \sigma &= -p n_s \end{aligned}$$

• Acoustic source:

$$n_f \cdot
abla p = 1$$

For more info, visit: www.bcamath.org/research/mip

sonic simulations

- Formation thickness: 0.25m.
- Monopole and dipole source, central frequency 8603 Hz.

www.bcamath.org basque center for applied mathematics

(bcam)

For more info, visit: www.bcamath.org/research/mip

sonic simulations

For more info, visit: www.bcamath.org/research/mip

sonic simulations

For more info, visit: www.bcamath.org/research/mip

sonic simulations

Monopole source — fast formation — with tool

For more info, visit: www.bcamath.org/research/mip

sonic simulations

Monopole source — fast formation

(bcam)

www.bcamath.org basque center for applied mathematics

For more info, visit: www.bcamath.org/research/mip

sonic simulations

For more info, visit: www.bcamath.org/research/mip

sonic simulations

For more info, visit: www.bcamath.org/research/mip

sonic simulations

www.bcamath.org

(bcam)

For more info, visit: www.bcamath.org/research/mip

sonic simulations

Direct calculation of dispersion curves

Dispersion curves contain the information about the slowness of the formation.

- dispersion curves are smooth with respect to variations in frequency,
- it is enough to calculate results only for a few frequencies (below 50)
- further reduction of the number of needed frequencies to 10 possible when only V_p (high frequencies) and V_s (low frequencies) are needed.
- \Rightarrow Dispersion curves are obtained directly from frequency domain results.
 - no need to use in the simulations a Ricker wavelet (neither any other wavelet),
 - the added stability of the problem,
 - better performance of PML in frequency domain,
 - smaller complexity of the problem.

For more info, visit: www.bcamath.org/research/mip

sonic simulations

sonic simulations

• Formation thickness: 0.25m.

(bcam)

• Monopole/dipole source: Ricker wavelet, central frequency 8603 Hz.

sonic simulations

sonic simulations

electromagnetic simulations

3D Variational Formulation

Time-Harmonic Maxwell's Equations

 $\begin{aligned} \nabla \times \mathbf{H} &= \mathring{\sigma} \mathbf{E} + \mathbf{J}^{imp} & \text{Ampere's law} (\mathring{\sigma} &= \sigma + j\omega\epsilon) \\ \nabla \times \mathbf{E} &= \mathring{\mu} \mathbf{H} + \mathbf{M}^{imp} & \text{Faraday's law} (\mathring{\mu} &= -j\omega\mu) \\ \nabla \cdot (\epsilon \mathbf{E}) &= \rho & \text{Gauss' law of Electricity} \\ \nabla \cdot (\mu \mathbf{H}) &= 0 & \text{Gauss' law of Magnetism} \end{aligned}$

E-VARIATIONAL FORMULATION:

$$\begin{cases} \mathsf{Find} \ \mathrm{E} \in \mathrm{E}_{\Gamma_{E}} + \boldsymbol{H}_{\Gamma_{E}}(\mathsf{curl};\Omega) \text{ such that:} \\ \langle \nabla \times \mathrm{F}, \mathring{\mu}^{-1} \nabla \times \mathrm{E} \rangle_{L^{2}(\Omega)} - \langle \mathrm{F}, \mathring{\sigma} \mathrm{E} \rangle_{L^{2}(\Omega)} = \langle \mathrm{F}, \mathrm{J}^{imp} \rangle_{L^{2}(\Omega)} \\ - \left\langle \mathrm{F}_{t}, \mathrm{J}_{\Gamma_{H}}^{imp} \right\rangle_{L^{2}(\Gamma_{H})} + \left\langle \nabla \times \mathrm{F}, \mathring{\mu}^{-1} \mathrm{M}^{imp} \right\rangle_{L^{2}(\Omega)} \quad \forall \ \mathrm{F} \in \boldsymbol{H}_{\Gamma_{E}}(\mathsf{curl};\Omega) \end{cases}$$

(bcam)

For more info, visit: www.bcamath.org/research/mip

electromagnetic simulations

Dimensionality Reduction for Maxwell's Equations Solving a 3D problem is CPU time and memory intensive. In some cases, we may reduce the complexity of the problem by using Fourier analysis.

Borehole Problems

Cylindrical Coordinates

Fourier Series Expansion

X-Well, CSEM Problems

Cartesian Coordinates

Fourier Transform

$$\mathrm{E}(\phi):=rac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}\mathcal{F}_n(\mathrm{E})e^{jn\phi}$$

$$\mathrm{E}(x_1):=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathcal{F}_r(\mathrm{E})e^{jrx_1}dx_1$$

electromagnetic simulations

Fourier Series Expansion

Fourier series expansion

Inverse Fourier series expansion

$$\mathcal{F}_n(\mathrm{E}):=rac{1}{\sqrt{2\pi}}\int_0^{2\pi}\mathrm{E}(\phi)e^{-jn\phi}d\phi \quad ; \quad \mathrm{E}(\phi)=rac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^\infty\mathcal{F}_n(\mathrm{E})e^{jn\phi}.$$

Main properties

• Compatibility with differentiation $\mathcal{F}_n(rac{\partial \mathrm{E}}{\partial \phi}) = jn \mathcal{F}_n(\mathrm{E})$:

$$\mathcal{F}_n(\mathbf{
abla} imes \mathrm{E}) = \mathbf{
abla}^n imes (\mathcal{F}_n(\mathrm{E})),$$

where

(bcam)

$$abla^n imes \mathrm{E} := \left(rac{jnE_z}{
ho} - rac{\partial E_\phi}{\partial z}, rac{\partial E_
ho}{\partial z} - rac{\partial E_z}{\partial
ho}, rac{1}{
ho}rac{\partial (
ho E_\phi)}{\partial
ho} - rac{jnE_
ho}{
ho}
ight),$$

• *L*₂-Orthogonality:

$${1\over \sqrt{2\pi}}\int_{0}^{2\pi}e^{jn\phi}e^{-jm\phi}d\phi=\sqrt{2\pi}\delta_{nm}\ .$$

electromagnetic simulations

Fourier Transform

Fourier transform

Inverse Fourier transform

$$\mathcal{F}_r(\mathrm{E}):=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathrm{E}(x)e^{-jrx}dx \quad ; \quad \mathrm{E}(x)=rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\mathcal{F}_r(\mathrm{E})e^{jrx}dr.$$

Main properties

• Compatibility with differentiation $\mathcal{F}_r(rac{\partial \mathrm{E}}{\partial x}) = jr \mathcal{F}_r(\mathrm{E})$:

$$\mathcal{F}_r(\mathbf{
abla} imes \mathrm{E}) = \mathbf{
abla}^r imes (\mathcal{F}_r(\mathrm{E})),$$

where

(bcam)

$$abla^r imes \mathrm{E}:=\left(rac{\partial E_z}{\partial y}-rac{\partial E_y}{\partial z},rac{\partial E_x}{\partial z}-jrE_z,jrE_y-rac{\partial E_x}{\partial y}
ight),$$

• *L*₂-Orthogonality:

$$rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{jrx}e^{-jsx}=\sqrt{2\pi}\delta_{sr}\;.$$

electromagnetic simulations

E-Variational Formulations (Cylindrical Coordinates)

FINITE ELEMENT — 3D—:

Find
$$\mathbf{E} \in \mathbf{E}_{\Gamma_{E}} + H_{\Gamma_{E}}(\operatorname{curl}; \Omega)$$
 such that:
 $\langle \nabla \times \mathbf{F}, \mathring{\mu}^{-1} \nabla \times \mathbf{E} \rangle_{L^{2}(\Omega)} - \langle \mathbf{F}, \mathring{\sigma} \mathbf{E} \rangle_{L^{2}(\Omega)} = \langle \mathbf{F}, \mathbf{J}^{imp} \rangle_{L^{2}(\Omega)}$
 $- \langle \mathbf{F}_{t}, \mathbf{J}^{imp}_{\Gamma_{H}} \rangle_{L^{2}(\Gamma_{H})} + \langle \nabla \times \mathbf{F}, \mathring{\mu}^{-1} \mathbf{M}^{imp} \rangle_{L^{2}(\Omega)} \quad \forall \mathbf{F} \in H_{\Gamma_{E}}(\operatorname{curl}; \Omega)$

FOURIER FINITE ELEMENT — 3D = Sequence of Coupled 2D Problems—:

$$\begin{cases} \mathsf{Find} \ \mathsf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_{n}(\mathsf{E}) \ e^{jn\phi}, \text{ where for each } n: \\ \mathcal{F}_{n}(\mathsf{E}) \in \mathcal{F}_{n}(\mathsf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\operatorname{curl}^{n}; \Omega_{2D}), \text{ and} \\ \sum_{m=-\infty}^{\infty} \langle \nabla^{n} \times \mathcal{F}_{n}(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \nabla^{m} \times \mathcal{F}_{m}(\mathsf{E}) \rangle_{L^{2}(\Omega_{2D})} - \langle \mathcal{F}_{n}(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\sigma}) \mathcal{F}_{m}(\mathsf{E}) \rangle_{L^{2}(\Omega_{2D})} \\ = \langle \mathcal{F}_{n}(\mathsf{F}) \ , \ \mathcal{F}_{n}(\mathsf{J}^{imp}) \rangle_{L^{2}(\Omega_{2D})} - \langle \mathcal{F}_{n}(\mathsf{F}_{t}) \ , \ \mathcal{F}_{n}(\mathsf{J}^{imp}_{S}) \rangle_{L^{2}(\Gamma_{H,1D})} \\ + \sum_{m=-\infty}^{\infty} \langle \nabla^{n} \times \mathcal{F}_{n}(\mathsf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}^{-1}) \mathcal{F}_{m}(\mathsf{M}^{imp}) \rangle_{L^{2}(\Omega_{2D})} \ \forall \ \mathcal{F}_{n}(\mathsf{F}) \in H_{\Gamma_{E,1D}}(\operatorname{curl}^{n}; \Omega_{2D}) \end{cases}$$

www.bcamath.org

(bcam)

electromagnetic simulations

Cartesian system of coordinates: x = (x, y, z). New non-orthogonal system of coordinates: $\zeta = (\zeta_1, \zeta_2, \zeta_3)$.

electromagnetic simulations

E-Variational Formulation in the New System of Coordinates ζ

In the new system of coordinates, we obtain: 3D FOURIER FINITE ELEMENT FORMULATION — Sequence of "Weakly" Coupled 2D Problems —

$$\begin{split} & \mathsf{Find} \ \mathbf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_n(\mathbf{E}) \ e^{jn \zeta_2} \text{, where for each } n \text{:} \\ & \mathcal{F}_n(\mathbf{E}) \in \mathcal{F}_n(\mathbf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}) \text{, and} \\ & \sum_{\substack{m=-2\\m=-2}}^{2} \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}_{mod}^{-1}) \nabla^m \times \mathcal{F}_m(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\sigma}_{mod}) \mathcal{F}_m(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} \\ & = \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathbf{J}^{imp}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}_t) \ , \ \mathcal{F}_n(\mathbf{J}_S^{imp}) \right\rangle_{L^2(\Gamma_{H,1D})} \\ & + \sum_{\substack{m=-2\\m=-2}}^{2} \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_{n-m}(\mathring{\mu}_{mod}^{-1}) \mathcal{F}_m(\mathbf{M}^{imp}) \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ \mathcal{F}_n(\mathbf{F}) \in H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}) \end{split}$$

Five Fourier modes are sufficient to represent EXACTLY the new material coefficients resulting from incorporating the change of coordinates.

www.bcamath.org

(bcam)

electromagnetic simulations

E-Variational Formulations (Cylindrical Coordinates)

Assumption: For $n \neq m$ we assume $\mathcal{F}_{n-m}(\mathring{\mu}^{-1}) = \mathcal{F}_{n-m}(\mathring{\sigma}^{-1}) = 0$.

FOURIER FINITE ELEMENT —2.5D = Sequence of Uncoupled 2D Problems—:

$$\begin{split} & \mathsf{Find} \ \mathbf{E} = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \mathcal{F}_n(\mathbf{E}) \ e^{jn\phi}, \text{where for each } n: \\ & \mathcal{F}_n(\mathbf{E}) \in \mathcal{F}_n(\mathbf{E}_{\Gamma_{E,1D}}) + H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}), \text{ and} \\ & \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\mu}^{-1}) \nabla^n \times \mathcal{F}_n(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\sigma}) \mathcal{F}_n(\mathbf{E}) \right\rangle_{L^2(\Omega_{2D})} \\ & = \left\langle \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathbf{J}^{imp}) \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathcal{F}_n(\mathbf{F}_t) \ , \ \mathcal{F}_n(\mathbf{J}_S^{imp}) \right\rangle_{L^2(\Gamma_{H,1D})} \\ & + \left\langle \nabla^n \times \mathcal{F}_n(\mathbf{F}) \ , \ \mathcal{F}_n(\mathring{\mu}^{-1}) \mathcal{F}_n(\mathbf{M}^{imp}) \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ \mathcal{F}_n(\mathbf{F}) \in H_{\Gamma_{E,1D}}(\operatorname{curl}^n; \Omega_{2D}) \end{split}$$

electromagnetic simulations

2D Variational Formulation (Axi-symmetric Problems)

If we further assume that $\mathcal{F}_n(J^{imp}) = \mathcal{F}_n(J_S^{imp}) = \mathcal{F}_n(M^{imp}) = 0 \quad \forall n \neq 0$, then we obtain one uncoupled 2D problem. Now, $E = \mathcal{F}_0(E)$.

 E_{ϕ} -Variational Formulation (Azimuthal)

Find
$$E_{\phi} \in E_{\phi,D} + \tilde{H}_{D}^{1}(\Omega)$$
 such that:
 $\left\langle \nabla \times F_{\phi}, \mathring{\mu}_{\rho,z}^{-1} \nabla \times E_{\phi} \right\rangle_{L^{2}(\Omega_{2D})} - \left\langle F_{\phi}, \mathring{\sigma}_{\phi} E_{\phi} \right\rangle_{L^{2}(\Omega_{2D})} = \left\langle F_{\phi}, J_{\phi}^{imp} \right\rangle_{L^{2}(\Omega_{2D})}$
 $- \left\langle F_{\phi}, J_{\phi,\tilde{\Gamma}_{H}}^{imp} \right\rangle_{L^{2}(\tilde{\Gamma}_{H})} + \left\langle F_{\phi}, \mathring{\mu}_{\rho,z}^{-1} \mathcal{M}_{\rho,z}^{imp} \right\rangle_{L^{2}(\Omega_{2D})} \quad \forall F_{\phi} \in \tilde{H}_{D}^{1}(\Omega)$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

$$\begin{cases} \mathsf{Find} \ \mathrm{E}_{\rho,z} = (E_{\rho}, E_z) \in \mathrm{E}_D + \tilde{H}_D(\mathsf{curl}; \Omega) \text{ such that:} \\ \left\langle \nabla \times \mathrm{F}_{\rho,z}, \mathring{\mu}_{\phi}^{-1} \nabla \times \mathrm{E}_{\rho,z} \right\rangle_{L^2(\Omega_{2D})} - \left\langle \mathrm{F}_{\rho,z}, \mathring{\sigma}_{\rho,z} \mathrm{E}_{\rho,z} \right\rangle_{L^2(\Omega_{2D})} = \\ \left\langle \mathrm{F}_{\rho,z}, \mathrm{J}_{\rho,z}^{imp} \right\rangle_{L^2(\Omega_{2D})} - \left\langle (\mathrm{F}_{\rho,z})_t, \mathrm{J}_{\rho,z,\tilde{\Gamma}_H}^{imp} \right\rangle_{L^2(\tilde{\Gamma}_H)} \\ + \left\langle \mathrm{F}_{\rho,z}, \mathring{\mu}_{\phi}^{-1} \mathrm{M}_{\phi}^{imp} \right\rangle_{L^2(\Omega_{2D})} \quad \forall \ (F_{\rho}, F_z) \in \tilde{H}_D(\mathsf{curl}; \Omega) \end{cases}$$

(bcam)

electromagnetic simulations

2D Finite Elements + 1D Fourier

3D Problem (using a Fourier Finite Element Method):

- H(curl) (Nedelec elements) for the meridian components ($\mathbb{E}_{\rho,z}$), and
- H^1 (Lagrange elements) for the azimuthal component (E_{ϕ}).

2.5D Problem (using a Fourier Finite Element Method):

- H(curl) (Nedelec elements) for the meridian components ($\mathbb{E}_{\rho,z}$), and
- H^1 (Lagrange elements) for the azimuthal component (E_{ϕ}).

2D Problem:

- $H(\operatorname{curl})$ (Nedelec elements) in terms of the meridian components ($\operatorname{E}_{\rho,z}$), or
- H^1 (Lagrange elements) in terms of the azimuthal component (E_{ϕ}).

For more info, visit: www.bcamath.org/research/mip

electromagnetic simulations

Goal-Oriented vs. Energy-norm $\mathit{hp}\text{-}\mathsf{Adaptivity}$

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-Norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

40

electromagnetic simulations

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM)

electromagnetic simulations

Simulation of Through Casing Resistivity Measurements

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

inversion problems

Variational Formulation (DC)

Notation:

$$B(u,v;\sigma) = <
abla v, \sigma
abla u >_{L^2(\Omega)}$$
 (bilinear u,v)

$$F_i(v) = \langle v, f_i
angle_{L^2(\Omega)} + \langle v, g_i
angle_{L^2(\partial \Omega)}$$
 (linear v)

$$L_i(u) = \langle l_i, u \rangle_{L^2(\Omega)} + \langle h_i, u \rangle_{L^2(\partial \Omega)}$$
 (linear u)

Direct Problem (homogeneous Dirichlet BC's):

 $\left\{egin{array}{l} \mathsf{Find} \ \hat{u}_i \in \mathsf{V} \ \mathsf{such that}: \ B(\hat{u}_i,v;\sigma) = F_i(v) \quad orall v \in V \end{array}
ight.$

Dual (Adjoint) Problem:

Find $\hat{v}_i \in \mathsf{V}$ such that : $B(u, \hat{v}_i; \sigma) = L_i(u) \quad orall u \in V$

inversion problems

Variational Formulation (AC)

Notation:

$$egin{aligned} B(\mathrm{E},\mathrm{F};\sigma) =&<
abla imes \mathrm{F}, \mu^{-1}
abla imes \mathrm{E} >_{L^2(\Omega)} - < \mathrm{F}, (\omega^2 \epsilon - j \omega \sigma) \mathrm{E} >_{L^2(\Omega)} \ & F_i(\mathrm{F}) = -j \omega < \mathrm{F}, \mathrm{J}_i^{imp} >_{L^2(\Omega)} + j \omega < \mathrm{F}, \mathrm{J}_{S,i}^{imp} >_{L^2(\partial\Omega)} \ & L_i(\mathrm{E}) =&< \mathrm{J}_i^{adj}, \mathrm{E} >_{L^2(\Omega)} + < \mathrm{J}_{S,i}^{adj}, \mathrm{E} >_{L^2(\partial\Omega)} \end{aligned}$$

Direct Problem (homogeneous Dirichlet BC's):

 $\left\{egin{array}{l} {\sf Find}\ \hat{{
m E}}_i\in {\sf W} \ {\sf such \ that}:\ B(\hat{{
m E}}_i,{
m F};\sigma)=F_i({
m F}) \quad orall {
m F}\in W \end{array}
ight.$

Dual (Adjoint) Problem:

 $\left\{egin{array}{l} {
m Find}\ \hat{{
m F}}_i\in {\sf W} \ {
m such \ that}:\ B({
m E},\hat{{
m F}}_i;\sigma)=L_i({
m E}) \quad orall {
m E}\in W \end{array}
ight.$

For more info, visit: www.bcamath.org/research/mip

inversion problems

Constrained Nonlinear Optimization Problem

Cost Functional:

$$\left\{ egin{array}{l} {\sf Find} \ \sigma > 0 \ {\sf such that it minimizes} \ C_eta(\sigma), {\sf where}: \ C_eta(\sigma) = ||W_m(L(\hat{u}_{m \sigma})-M)||_{l_2}^2 + eta||R(\sigma-\sigma_0)||_{L_2}^2 \,, \end{array}
ight.$$

where

 $M_{i} \text{ denotes the } i\text{-th measurement}, M = (M_{1}, ..., M_{n})$ $L_{i} \text{ is the } i\text{-th quantity of interest}, L = (L_{1}, ..., L_{n})$ $||M||_{l_{2}}^{2} = \sum_{i=1}^{n} M_{i}^{2} \quad ; \quad ||R(\sigma - \sigma_{0})||_{L_{2}}^{2} = \int (R(\sigma - \sigma_{0}))^{2}$ $\beta \text{ is the relaxation parameter}, \sigma_{0} \text{ is given}, W_{m} \text{ are weights}$ $Main \text{ objective (inversion problem): Find } \hat{\sigma} = \min_{\sigma > 0} C_{\beta}(\sigma)$

inversion problems

Solving a Constrained Nonlinear Optimization Problem

We select the following deterministic iterative method:

$$\sigma^{(n+1)}=\sigma^{(n)}+lpha^{(n)}\delta\sigma^{(n)}$$

- How to find a search direction $\delta\sigma^{(n)}$?
 - We will employ a change of coordinates and a truncated Taylor's series expansion.
- How to determine the step size $\alpha^{(n)}$?
 - Either with a fixed size or using an approximation for computing $L(\sigma^{(n)}+lpha^{(n)}\delta\sigma^{(n)}).$
- How to guarantee that the nonlinear constraints will be satisfied?
 - Imposing the Karush-Kuhn-Tucker (KKT) conditions or with a penalization method, or via a change of variables.

For more info, visit: www.bcamath.org/research/mip

inversion problems

Search Direction Method

Change of coordinates:

$$h(s)=\sigma \quad => ext{ Find } \hat{s} = \min_{h(s)>0} C_eta(s)$$

Taylor's series expansion:

A)
$$C_{\beta}(s + \delta s) \approx C_{\beta}(s) + \delta s \nabla C_{\beta}(s) + 0.5 \delta s^2 H_{C_{\beta}}(s)$$

B) $L(s + \delta s) \approx L(s) + \delta s \nabla L(s)$, $R(s + \delta s) = R(s) + \delta s \nabla R(s)$

Expansion A) leads to the Newton-Raphson method. Expansion B) leads to the Gauss-Newton method. Expansion A) with $H_{C_{\beta}} = I$ leads to the steepest descent method. Higher-order expansions require from higher-order derivatives.

inversion problems

Computation of Jacobian Matrix

Using the Fréchet Derivative:

Therefore, we conclude:

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

inversion problems

Computation of Hessian Matrix

Following a similar argument as for the Jacobian matrix, we obtain:

$$\begin{split} \frac{\partial^2 L_i(\hat{u}_i)}{\partial s_j \partial s_k} &= -B\left(\frac{\partial \hat{u}_i}{\partial s_j}, \hat{v}_i, \frac{\partial h(s)}{\partial s_k}\right) - B\left(\hat{u}_i, \frac{\partial \hat{v}_i}{\partial s_j}, \frac{\partial h(s)}{\partial s_k}\right) - B\left(\hat{u}_i, \hat{v}_i, \frac{\partial^2 h(s)}{\partial s_j \partial s_k}\right) \\ \text{How do we compute } \frac{\partial \hat{u}_i}{\partial s_j} \text{ and } \frac{\partial \hat{v}_i}{\partial s_j}?\\ \text{Find } \frac{\partial \hat{u}_i}{\partial s_j} \text{ such that } : B\left(\frac{\partial \hat{u}_i}{\partial s_j}, v_i, h(s)\right) = -B\left(\hat{u}_i, v_i, \frac{\partial h(s)}{\partial s_j}\right) \quad \forall v_i \\ \text{Find } \frac{\partial \hat{v}_i}{\partial s_j} \text{ such that } : B\left(\frac{\partial \hat{v}_i}{\partial s_j}, u_i, h(s)\right) = -B\left(\hat{v}_i, u_i, \frac{\partial h(s)}{\partial s_j}\right) \quad \forall u_i \end{split}$$

We can compute the Hessian matrix EXACTLY by just solving our original problem for different right-hand-sides, and performing additional integrations.

www.bcamath.org

(bcam)

61

For more info, visit: www.bcamath.org/research/mip

62

For more info, visit: www.bcamath.org/research/mip

63

For more info, visit: www.bcamath.org/research/mip

For more info, visit: www.bcamath.org/research/mip

inversion problems

The inverse library is composed of multiple algorithms for imposing constraints, and finding search directions and corresponding step sizes.

Jacobian and Hessian matrices are computed exactly by simply solving the dual (adjoint) formulation and performing additional integrations.

The inverse library is compatible with multi-physics problems.

Pardo et. al.	For more info, visit: www.bcamath.org/research/	
conclusions		
 The <i>hp</i>-Finite Elemination convergence for a 	nent Method provides exponential variety of multi-physics problems.	
• We succesfully em for simulation of e measurements.	ployed a Fourier-Finite-Element method lectromagnetic and sonic logging	
• We aim to perform measurements wit medicine, etc.).	joint-inversion of multiphysics th a variety of applications (oil-industry,	
• We need Ph.D. stu collaborators in or using advanced nu	dents, post-doctoral fellows and der to solve this and other applications umerical methods.	

www.bcamath.org basque center for applied mathematics

(bcam)