ADMOS 2005: International Conference on Adaptive Modeling and Simulation

High Accuracy Simulations of Resistivity Logging Instruments Using a Self-Adaptive Goal-Oriented *hp* Finite Element Method

> David Pardo (dzubiaur@yahoo.es), L. Demkowicz, C. Torres-Verdin

Collaborators: Science Department of Baker-Atlas,

L. Tabarovsky, J. Kurtz, M. Paszynski, D. Xue

September 8, 2005

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

OVERVIEW

- 1. Motivation: Simulation of Resistivity Logging Instruments.
- 2. Methodology:
 - The *hp*-Finite Element Method (FEM) Exponential Convergence .
 - Automatic Goal-Oriented Refinements in the Quantity of Interest -.
 - Flexibility, Reliability, High Accuracy and High Performance.
- 3. Numerical Results:
 - Simulation of Resistivity Logging Instruments with Casing.
 - Simulation of Resistivity Logging Instruments with Mandrel.
- 4. Conclusions and Future Work (3D Problems, Multi-physics).

The University of Texas at Austin

RESISTIVITY LOGGING INSTRUMENTS

Logging Instruments: Definition

RESISTIVITY LOGGING INSTRUMENTS

Utility of Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS

Main Objective: To Solve an Inverse Problem

A software for solving the DIRECT problem is essential in order to solve the INVERSE problem

RESISTIVITY LOGGING INSTRUMENTS

Resistivity Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS Final Result Obtained from the Logging Instruments

RESISTIVITY LOGGING INSTRUMENTS

RESISTIVITY LOGGING INSTRUMENTS

Variations due to frequency are small (below 5%)

RESISTIVITY LOGGING INSTRUMENTS

Variations due to water ivasion are large

www.ices.utexas.edu/%7Epardo

High Performance Finite Element Software

RESISTIVITY LOGGING INSTRUMENTS

Variations due to water ivasion are large

RESISTIVITY LOGGING INSTRUMENTS

Variations due to water ivasion are large

RESISTIVITY LOGGING INSTRUMENTS

Casing resistivity can be analyzed from different frequency measurements

www.ices.utexas.edu/%7Epardo

THE hp-FINITE ELEMENT METHOD (FEM)

The *h*-Finite Element Method

- 1. Convergence limited by the polynomial degree, and large material contrasts.
- 2. Optimal *h*-grids do NOT converge exponentially in real applications.
- 3. They may "lock" (100% error).

The *p*-Finite Element Method

- 1. Exponential convergence feasible for analytical ("nice") solutions.
- 2. Optimal *p*-grids do NOT converge exponentially in real applications.
- 3. If initial *h*-grid is not adequate, the *p*-method will fail miserably.

The *hp*-Finite Element Method

- **1. Exponential convergence feasible for ALL solutions.**
- 2. Optimal *hp*-grids DO converge exponentially in real applications.
- 3. If initial *hp*-grid is not adequate, results will still be great.

D. Pardo, L. Demkowicz, C. Torres-Verdin

8 Sep 2005

Motivation (Goal-Oriented Adaptivity)

Motivation (Goal-Oriented Adaptivity)

E(R)

Test Problem

- Solution decays exponentially. • $\frac{|E(T)|}{|T(T)|} \approx 10^{60}$
- Results using energy-norm adaptivity:
 - Energy-norm error: 0.001%
 - Relative error in the quantity of interest $> 10^{30}$ %.

Motivation (Goal-Oriented Adaptivity)

Test Problem

- Solution decays exponentially. • $\frac{|E(T)|}{|E(R)|} \approx 10^{60}$
- Results using energy-norm adaptivity:
 - Energy-norm error: 0.001%
 - Relative error in the quantity of interest $> 10^{30}$ %.

Goal-oriented adaptivity is needed

Becker-Rannacher (1995,1996), Rannacher-Stuttmeier (1997), Cirak-Ramm (1998), Paraschivoiu-Patera (1998), Peraire-Patera (1998), Prudhomme-Oden (1999, 2001), Heuveline-Rannacher (2003), Solin-Demkowicz (2004).

Motivation (Goal-Oriented Adaptivity)

Goal-oriented adaptivity is needed

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

 $\left\{ egin{array}{ll} {\sf Find} \ L(\Psi), {\sf where} \ \Psi \in V {
m ~such ~that}: \ b(\Psi,\xi) = f(\xi) & orall \xi \in V {
m ~.} \end{array}
ight.$

We define residual $r_e(\xi) = b(e, \xi)$. We seek for solution G of:

 $\left\{ egin{array}{l} {\sf Find} \ G \in V'' \sim V \ {\sf such \ that}: \ G(r_e) = L(e) \ . \end{array}
ight.$

This is necessarily solved if we find the solution of the *dual* problem:

 $\left\{egin{array}{l} {\sf Find}\ G\in V \ {\sf such \ that}: \ b(\Psi,G)=L(\Psi) \quad orall \Psi\in V \ . \end{array}
ight.$

Notice that L(e) = b(e, G).

Mathematical Formulation (Goal-Oriented Adaptivity)

 $L(\Psi)=b(\Psi,G)$

y z x

Algorithm for Goal-Oriented Adaptivity

 $\begin{array}{l} \text{Compute } e = \Psi_{h/2,p+1} - \Psi_{hp}, \ \text{ and } \tilde{e} = \Psi_{h/2,p+1} - \Pi_{hp}\Psi_{h/2,p+1}.\\ \text{Compute } \epsilon = G_{h/2,p+1} - G_{hp}, \text{ and } \tilde{\epsilon} = G_{h/2,p+1} - \Pi_{hp}G_{h/2,p+1}.\\ |L(e)| = |b(e,\epsilon)| \sim |b(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} |b_{K}(\tilde{e},\tilde{\epsilon})| \leq \sum_{K} \parallel \tilde{e} \parallel_{E,K} \parallel \tilde{\epsilon} \parallel_{E,K}. \end{array}$

Apply the fully automatic hp-adaptive algorithm.

Model Problem with Steel Casing

Flexibility (What Problems Can We Solve?)

Time-Harmonic Maxwell's Equations

${f abla} imes { m H} = (ar{ar{\sigma}} + j\omegaar{ar{\epsilon}}){ m E} + { m J}^{imp}$	Ampere's law
${f abla} imes { m E} = -j\omegaar{ar{\mu}}{ m H} - { m M}^{imp}$	Faraday's law
${oldsymbol abla} \cdot (ar{ar \epsilon} { m E}) = ho$	Gauss' law of Electricity
${f abla} \cdot (ar{ar{\mu}} { m H}) = 0$	Gauss' law of Magnetism

E-VARIATIONAL FORMULATION:

Find
$$\mathrm{E} \in \mathrm{E}_D + H_D(\mathrm{curl};\Omega)$$
 such that:
 $\int_{\Omega} (\bar{\bar{\mu}}^{-1} \nabla \times \mathrm{E}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV - \int_{\Omega} (\bar{\bar{k}}^2 \mathrm{E}) \cdot \bar{\mathrm{F}} \, dV = -j\omega \int_{\Omega} \mathrm{J}^{imp} \cdot \bar{\mathrm{F}} \, dV$
 $+j\omega \int_{\Gamma_N} \mathrm{J}^{imp}_{\Gamma_N} \cdot \bar{\mathrm{F}}_t \, dS - \int_{\Omega} (\bar{\bar{\mu}}^{-1} \mathrm{M}^{imp}) \cdot (\nabla \times \bar{\mathrm{F}}) \, dV \ \forall \, \mathrm{F} \in H_D(\mathrm{curl};\Omega)$

Flexibility (What Problems Can We Solve?) AXISYMMETRIC PROBLEMS

 E_{ϕ} -Variational Formulation (Azimuthal)

 $\left\{egin{aligned} & \mathsf{Find}\ E_\phi \in E_{\phi,D} + ilde{H}_D^1(\Omega)\ \mathsf{such\ that:} \ & \int_\Omega (ar{\mu}_{
ho,z}^{-1}
abla imes \mathbf{E}_\phi) \cdot (
abla imes ar{\mathbf{F}}_\phi)\ dV - \int_\Omega (ar{k}_\phi^2 \mathbf{E}_\phi) \cdot ar{\mathbf{F}}_\phi\ dV = -j\omega \int_\Omega J_\phi^{imp}\ ar{F}_\phi\ dV \ & +j\omega \int_{\Gamma_N} J_{\phi,\Gamma_N}^{imp}\ ar{F}_\phi\ dS - \int_\Omega (ar{\mu}_{
ho,z}^{-1} \mathbf{M}_{
ho,z}^{imp}) \cdot ar{\mathbf{F}}_\phi\ dV \quad \forall\ F_\phi \in ilde{H}_D^1(\Omega) \end{aligned}
ight.$

 $E_{\rho,z}$ -Variational Formulation (Meridian)

Find
$$(E_{
ho}, E_z) \in E_D + \tilde{H}_D(\operatorname{curl}; \Omega)$$
 such that:

$$\int_{\Omega} (\bar{\mu}_{\phi}^{-1} \nabla \times E_{\rho,z}) \cdot (\nabla \times \bar{F}_{\rho,z}) \, dV - \int_{\Omega} (\bar{k}_{\rho,z}^{2} E_{\rho,z}) \cdot \bar{F}_{\rho,z} \, dV =$$

$$-j\omega \int_{\Omega} J_{\rho}^{imp} \bar{F}_{\rho} + J_{z}^{imp} \bar{F}_{z} \, dV + j\omega \int_{\Gamma_N} J_{\rho,\Gamma_N}^{imp} \bar{F}_{\rho} + J_{z,\Gamma_N}^{imp} \bar{F}_{z} \, dS$$

$$-\int_{\Omega} (\bar{\mu}_{\phi}^{-1} M_{\phi}^{imp}) \cdot \bar{F}_{\rho,z} \, dV \quad \forall (F_{\rho}, F_{z}) \in \tilde{H}_D(\operatorname{curl}; \Omega)$$

www.ices.utexas.edu/%7Epardo

Flexibility (What Problems Can We Solve?)

- Physical Devices: Casing, Casing Imperfections, Mandrel, Magnetic Buffers, Insulators, Displacement Currents, Combination of All, etc.
- Materials: Isotropic, Anisotropic*.
- Sources: Toroidal Antennas, Solenoidal Antennas, Dipoles in Any Direction, Electrodes, Finite Size Antennas, Combination of All, etc.
- Logging Instruments: Logging While Drilling (LWD), Laterolog, Normal, Induction, Dielectric Instruments, Cross-well, etc.
- Any Frequency (0-10 Ghz).

ALL AXISYMMETRIC RESISTIVITY LOGGING PROBLEMS

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with a mandrel.
- 3. Exact solution in a homogeneous media with casing.
- Verification of Physical Properties.
 - 1. Reciprocity principle (Gregory Itskovich).
 - 2. Discrete divergence free approximation for edge elements.
- Numerical Verifications.
 - **1.** Different size of domain and antennas.
 - 2. Comparison against other numerical software (Yang Wei).
 - **3. Error control provided by the fine grid solution.**
 - 4. Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Error control provided by the fine grid solution.

Reliability (Can We Trust the Solutions?)

Problem with casing at 10 kHz.

Continuous Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516098429E-08	-0.1456374493E-08
FINE GRID	0.1516094029E-08	-0.1456390824E-08

Edge Elements

Quantity of Interest	Real Part	Imag Part
COARSE GRID	0.1516060872E-08	-0.1456337248E-08
FINE GRID	0.1516093804E-08	-0.1456390864E-08

Comparison between continuous elements vs. edge elements.

Reliability (Can We Trust the Solutions?)

• Comparison Against Analytical Results.

- 1. Exact solution in a homogeneous media.
- 2. Exact solution in a homogeneous media with a mandrel.
- 3. Exact solution in a homogeneous media with casing.
- Verification of Physical Properties.
 - 1. Reciprocity principle (Gregory Itskovich).
 - 2. Discrete divergence free approximation for edge elements.
- Numerical Verifications.
 - 1. Different size of domain and antennas.
 - 2. Comparison against other numerical software (Yang Wei).
 - 3. Error control provided by the fine grid.
 - 4. Comparison between continuous elements vs. edge elements.

HIGHLY RELIABLE SOFTWARE

Accuracy (Are the Solutions Accurate?)

EXTREMELY ACCURATE SOFTWARE

Performance (How Fast Can We Solve the Problems?)

80 Vert. Pos.	$10^{-6} \Omega \cdot m$	$10^{-5} \Omega \cdot m$
Toroid (10 Khz)	19' 46"	16' 28"
Ring of Vert. Dipoles (10 Khz)	22' 47"	17' 02"
Ring of Horiz. Dipoles (10 Khz)	19' 25"	13' 25"
Electrodes (0 Hz)	10' 10"	8' 35"

IBM Power 4 compiler 1.3 Ghz (4 years old)

Possible improvements in performance:

- To use a 3.4 Ghz processor.
- To execute the code in 8 processors (10 positions per processor).
- To improve implementation.

HIGH PERFORMANCE SOFTWARE

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m

Goal-Oriented vs. Energy-norm *hp***-Adaptivity**

Problem with Mandrel at 2 Mhz.

Continuous Elements (Goal-Oriented Adaptivity)

Quantity of Interest	Real Part	Imag Part
COARSE GRID	-0.1629862203E-01	-0.4016944732E-02
FINE GRID	-0.1629862347E-01	-0.4016944223E-02

Continuous Elements (Energy-norm Adaptivity)

Quantity of Interest	Real Part	Imag Part
0.01% ENERGY ERROR	-0.1382759158E-01	-0.2989492851E-02

It is critical to use GOAL-ORIENTED adaptivity.

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY

First. Vert. Diff. E_{ϕ} (solenoid). Position: 0.475m GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

First Vert. Diff. H_{ϕ} for different antennas

In LWD instruments, we obtain similar results using toroids or a ring of vert. dipoles

www.ices.utexas.edu/%7Epardo

First Vert. Diff. E_z for a toroid antenna

Toroids are adequate for identifying highly resistive layers

First Vert. Diff. E_{ϕ} for a solenoid antenna

Solenoids are adequate for identifying low resistive layers

Use of Magnetic Buffers (E_{ϕ} for a solenoid)

Use of magnetic buffers strengthen the signal in combination with solenoids

www.ices.utexas.edu/%7Epardo

Use of Magnetic Buffers (H_{ϕ} for a toroid)

However, magnetic buffers weaken the signal in combination with toroids

www.ices.utexas.edu/%7Epardo

Large invasion effects can be sensed using solenoids

Invasion study (H_{ϕ} for a toroid)

Invasion Study Toroid No Invasion No Invasion 0.15m Invasion 0.15m Invasion 2.5 2.5 0.4m Invasion 0.4m Invasion • 0.9m Invasion • 0.9m Invasion Vertical Position of Receiving Antenna (m) Vertical Position of Receiving Antenna (m) 100 Ohm-m 100 Ohm-m 2 2 1.5 1.5 0.5 100 Ohm – m 0.5 100 Ohm – m 1 Ohm-m-Ohin-m . 10000 Ohm-m 1 10000 Ohm-m -0.5 -0.5 100 Ohm-m 100 Ohm-m -1 -1.5^L 10⁻⁵ _1.5└ _200 10^{0} -100 0 100 200 Phase (degrees) Amplitude First Vert. Diff. Magnetic Field (A/m²)

Small invasion effects can be sensed using toroids

www.ices.utexas.edu/%7Epardo

8 Sep 2005

Invasion in resistive layers cannot be sensed using solenoids

www.ices.utexas.edu/%7Epardo

8 Sep 2005

Invasion study (H_{ϕ} for a toroid)

Invasion Study Toroid No Invasion No Invasion 0.15m Invasion 0.15m Invasion 2.5 2.5 0.4m Invasion 0.4m Invasion • 0.9m Invasion 0.9m Invasion Vertical Position of Receiving Antenna (m) Vertical Position of Receiving Antenna (m) 100 Ohm-m 100 Ohm-m 2 2 1.5 1.5 0.5 0.5 1 Ohm an 1 Ohm-m 10000 Ohm-m 100 Ohm – m→ 10000 Ohm m 100 Ohm - m -0.5 -0.5 100 **Ohm**–m 100 Ohm-m -1 -1.5^L 10⁻⁵ _1.5└_ _200 10^{0} -1000 100 200 Phase (degrees) Amplitude First Vert. Diff. Magnetic Field (A/m²)

Invasion in resistive layers should be studied using toroids

www.ices.utexas.edu/%7Epardo

High Performance Finite Element Software

Invasion and mandrel magnetic permeab. (E_{ϕ})

The effect of magnetic permeability on the mandrel is similar to the effect of magnetic buffers

www.ices.utexas.edu/%7Epardo

Anisotropy Study Toroid No Anisotropy No Anisotropy 1x5 Ω · m 1x5 Ω · m 2.5 2.5 $1x5 \ \Omega \cdot m$; 1000x10000 $\Omega \cdot m$ • $1x5 \Omega \cdot m$; $1000x10000 \Omega \cdot m$ Vertical Position of Receiving Antenna (m) Vertical Position of Receiving Antenna (m) 100 Ohm-m 100 Ohm-m 1.5 1.5 0.5 1x5 Ohm-m 0.5 1x5 Ohm-m 1000x10000 Ohm-m 1000x10000 Ohm-m -0.5-0.5 100 Ohm-m 100 Ohm-m -1 -1.5^L 10⁻⁵ _1.5└_ _200 10^{0} -1000 100 200 Phase (degrees) Amplitude First Vert. Diff. Magnetic Field (A/m²)

Anisotropy (H_{ϕ})

Anisotropy effects may be important when studying resistive layers

www.ices.utexas.edu/%7Epardo

CONCLUSIONS AND FUTURE WORK

- The self-adaptive goal-oriented *hp*-adaptive strategy converges exponentially in terms of a user-prescribed quantity of interest vs. the CPU time.
- We obtain fast, reliable and accurate solutions for problems with a large dynamic range and high material constrasts.

Future Work

- To apply the self-adaptive goal-oriented *hp*-FEM to 3D problems for simulation of deviated wells.
- To apply the self-adaptive goal-oriented hp-FEM for inversion of 2D multi-physic problems.

Department of Petroleum and Geosystems Engineering, and Institute for Computational Engineering and Sciences (ICES)