VI EIEC, Chiclana, Spain

An *hp* Fourier Finite Element (FFE) Framework with Electromagnetics and Multiphysics Applications

D. Pardo, C. Torres-Verdín, L.E. García-Castillo, M. Paszynski, M.J. Nam

October 23, 2008

OVERVIEW

- 1. Motivation: Waveguide Design and Oil-Industry Applications.
- 2. Method:
 - Fourier finite element (FFE) method.
 - Parallel implementation.
 - Multi-physics framework.
- 3. Numerical Simulations:
 - 2D resistivity logging measurements.
 - Marine controlled source electromagnetic (CSEM) measurements.
 - 3D resistivity logging measurements.
- 4. Conclusions and Future Work.

MOTIVATION (OIL-INDUSTRY)

Figure from the USGS Science Center for Coastal and Marine Geology

23 Oct 2008

MOTIVATION (OIL-INDUSTRY)

Marine Controlled-Source Electromagnetics (CSEM)

Figure from the UCSD Institute of Oceanography

MOTIVATION (OIL-INDUSTRY)

Multiphysics Logging Measurements

OBJECTIVES: To determine payzones (porosity), amount of oil/gas (saturation), and ability to extract oil/gas (permeability).

MOTIVATION (OIL-INDUSTRY)

Main Objective: To Solve a Multiphysics Inverse Problem

Given multi-frequency electromagnetic, acoustic, and nuclear measurements, the objective is to determine porosity, saturation, and permeability distributions in the reservoir.

FOURIER FINITE ELEMENT METHOD

Dip Angle Invasion Anisotropy **Triaxial Induction Eccentricity** Laterolog **Through-Casing** Induction-LWD **Induction-Wireline Inverse Problems Multi-Physics**

Objective: Find solution at the receiver antennas.

Material coefficients are constant with respect to the quasi-azimuthal direction ζ_2 Fourier Series Expansion in ζ_2

DC Problems:
$$-\nabla \sigma \nabla u = f$$

$$egin{aligned} u(\zeta_1,\zeta_2,\zeta_3) &= \sum_{l=-\infty}^{l=\infty} u_l(\zeta_1,\zeta_3) e^{jl\zeta_2} \ \sigma(\zeta_1,\zeta_2,\zeta_3) &= \sum_{m=-\infty}^{m=\infty} \sigma_m(\zeta_1,\zeta_3) e^{jm\zeta_2} \end{aligned}$$

$$f(\zeta_1,\zeta_2,\zeta_3)=\sum_{n=-\infty}^{n=\infty}f_n(\zeta_1,\zeta_3)e^{jn\zeta_2}$$

Fourier modes $e^{jl\zeta_2}$ are orthogonal high-order basis functions that are (almost) invariant with respect to the gradient operator.

Cartesian system of coordinates: $x = (x_1, x_2, x_3)$. New non-orthogonal system of coordinates: $\zeta = (\zeta_1, \zeta_2, \zeta_3)$.

Subdomain I;Subdomain II;Subdomain III $\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 \end{cases}$; $\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \tan \theta_0 \frac{\zeta_1 - \rho_1}{\rho_2 - \rho_1} \rho_2 \end{cases}$; $\begin{cases} x_1 = \zeta_1 \cos \zeta_2 \\ x_2 = \zeta_1 \sin \zeta_2 \\ x_3 = \zeta_3 + \tan \theta_0 \zeta_1 - \rho_1 \\ z_3 = \zeta_3 + \tan \theta_0 \zeta_1 \end{cases}$

Basque Center for Applied Mathematics (BCAM)

Final Variational Formulation

We define the Jacobian matrix $\mathcal{J} = \frac{\partial(x_1, x_2, x_3)}{\partial(\zeta_1, \zeta_2, \zeta_3)}$ and its determinant $|\mathcal{J}| = \det(\mathcal{J})$.

Variational formulation in the new system of coordinates:

$$egin{cases} {\sf Find} \ u \in u_D + H^1_D(\Omega) \ {\sf such that:} \ \left\langle rac{\partial v}{\partial \zeta} \,, \ ilde{\sigma} rac{\partial u}{\partial \zeta}
ight
angle_{L^2(\Omega)} = \left\langle v \,, \ ilde{f}
ight
angle_{L^2(\Omega)} \ \ orall v \in H^1_D(\Omega) \ , \end{cases}$$

where:

$$ilde{\sigma}:=\mathcal{J}^{-1}\sigma\mathcal{J}^{-1^T}|\mathcal{J}| \quad;\quad ilde{f}:=f|\mathcal{J}| \;.$$

Same variational formulation with new materials and load data

Five Fourier modes are enough to represent EXACTLY the new material coefficients.

Direct Current:

Find
$$u \in u_D + H_D^1(\Omega)$$
 such that:
 $\sum_{n=k-2}^{n=k+2} \left\langle \left(\frac{\partial v}{\partial \zeta}\right)_k, \ \tilde{\sigma}_{k-n} \left(\frac{\partial u}{\partial \zeta}\right)_n \right\rangle_{L^2(\Omega_{2D})} = \left\langle v_k, \ \tilde{f}_k \right\rangle_{L^2(\Omega_{2D})} \quad \forall v_k$

Alternate Current:

$$\begin{cases} \mathsf{Find} \ (\mathrm{E})_s \in H_{\Gamma_E}(\operatorname{curl};\Omega) \text{ such that:} \\ \sum_{\substack{n=s+2\\n=s-2\\-\left\langle \mathrm{F}_s,\ (\tilde{k}^2)_{s-n} \mathrm{E}_l \right\rangle_{L^2(\Omega_{2D})}} = -j\omega \left\langle \mathrm{F}_s,\ (\tilde{\mathrm{J}}^{imp})_s \right\rangle_{L^2(\Omega_{2D})} & \forall \, \mathrm{F}_s \end{cases}$$

Example (7 Fourier Modes)

$$\sum_{n=k-2}^{n=k+2} \underbrace{\left\langle \left(\frac{\partial v}{\partial \zeta}\right)_k , \, \tilde{\sigma}_{k-n} \left(\frac{\partial u}{\partial \zeta}\right)_n \right\rangle_{L^2(\Omega_{2D})}}_{(k,k-n,n)} = \left\langle v_k \, , \, \tilde{f}_k \right\rangle_{L^2(\Omega_{2D})}$$

Stiffness Matrix:

Basque Center for Applied Mathematics (BCAM)

A Self-Adaptive Goal-Oriented *hp*-FEM

Optimal 2D Grid (Through Casing Resistivity Problem)

We vary locally the element size h and the polynomial order of approximation p throughout the grid.

Optimal grids are automatically generated by the computer.

The self-adaptive goal-oriented hp-FEM provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of interest.

Axisymmetric Logging-While-Drilling (LWD) Simulation GOAL-ORIENTED HP-ADAPTIVITY (Quadrilateral Elements)

FOURIER FINITE ELEMENT METHOD

Axisymmetric Logging-While-Drilling (LWD) Simulation GOAL-ORIENTED HP-ADAPTIVITY (ZOOM TOWARDS FIRST RECEIVER ANTENNA)

PARALLEL IMPLEMENTATION

MULTIPHYSICS FRAMEWORK

We are generating new data structures based on:

The addition of one new module/library for solving inverse problems.

The use of different number of equations for each element/node.

- Enables to consider different physics for each element/node.
- Enables the use of different number of Fourier modes for each element/node.

The combination of different types of elements used for each physics:

- Continous H^1 -elements (DC problems, elasticity, etc.)
- Nedelec (edge) H(curl)-elements (Electromagnetics).
- Raviart-Thomas (face) H(div)-elements (Fluid-dynamics)
- Discontinuous L^2 -elements.

MULTIPHYSICS FRAMEWORK

Final hp-grid and solution

Monopole source, open borehole setting:

Figure: Frequency-domain solution at the center frequency of 8 kHz (acoustics subdomain scaled by a factor of 10 in radial direction; plotting ranges $[0.1 \min, 0.1 \max]$)

Basque Center for Applied Mathematics (BCAM)

23 Oct 2008

RESULTS: 2D MARINE CSEM

Model Problem I: UNIFORM FORMATION — 0.25 Hz —

23 Oct 2008

RESULTS: 2D MARINE CSEM

Model Problem I: UNIFORM FORMATION — 0.75 Hz —

21

23 Oct 2008

RESULTS: 2D MARINE CSEM

Model Problem I: UNIFORM FORMATION — 1.25 Hz —

22

RESULTS: 2D MARINE CSEM

23 Oct 2008

RESULTS: 2D MARINE CSEM

Basque Center for Applied Mathematics (BCAM)

23 Oct 2008

RESULTS: 2D MARINE CSEM

23 Oct 2008

RESULTS: 2D MARINE CSEM

RESULTS: 2D MARINE CSEM

23 Oct 2008

RESULTS: 2D MARINE CSEM

23 Oct 2008

RESULTS: 2D MARINE CSEM

23 Oct 2008

RESULTS: 2D MARINE CSEM

RESULTS: 2D MARINE CSEM

Basque Center for Applied Mathematics (BCAM)

23 Oct 2008

RESULTS: 2D MARINE CSEM

Comparison — 0.25 Hz —

The finite layer of oil is clearly identified, and it is different from the solution for the infinite layer of oil. To consider anisotropy is essential.

23 Oct 2008

RESULTS: 2D MARINE CSEM

Comparison — 0.75 Hz —

As we increase the frequency, the effect of oil becomes more localized.

Basque Center for Applied Mathematics (BCAM)

23 Oct 2008

RESULTS: 2D MARINE CSEM

Comparison — 1.25 Hz —

As we increase the frequency, the effect of oil becomes more localized.

23 Oct 2008

RESULTS: 2D MARINE CSEM

0.75 Hz (FINITE LAYER OF OIL)

23 Oct 2008

RESULTS: 2D MARINE CSEM

0.75 Hz (FINITE LAYER OF OIL)

Basque Center for Applied Mathematics (BCAM)

23 Oct 2008

RESULTS: 2D MARINE CSEM

0.75 Hz (FINITE LAYER OF OIL)

RESULTS: 3D RESISTIVITY LOGGING

41

Basque Center for Applied Mathematics (BCAM)

RESULTS: 3D RESISTIVITY LOGGING

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

43

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

43

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

43

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

43

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

44

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

RESULTS: 3D RESISTIVITY LOGGING

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

Basque Center for Applied Mathematics (BCAM)

RESULTS: 3D RESISTIVITY LOGGING

60-Degree Deviated Well

LWD, 2 Mhz

CONCLUSIONS AND FUTURE WORK

- A Fourier-Finite-Element method provides a suitable formulation for simulation of resistivity geophysical applications.
- Goal-oriented refinements are essential in marine CSEM geophysical applications due to the dissipative nature of the earth.
- A parallel implementation based on a shared domain-decomposition is simple and provides additional performance for a moderate number of processors.
- We are developing a multiphysics framework for the joint-inversion of multiphysics measurements.
- We are looking for Ph.D. students and postdoctoral fellows to further develop this software and work on the joint-inversion of multiphysics measurements.

Basque Center for Applied Mathematics (BCAM)