

Outline

- Previous Work: 2D Dual-Laterolog (DLL)
- hp Adaptive Finite Element Method
- Embedded Post-Processing Method
- 3D Methodology and DLL Simulations
- Deviated Wells
- Eccentered Measurements
- Iterative Solver
- Parallel Implementation
- Conclusions and Future Work

hp-FEM

We vary locally the element size h and the polynomial order of approximation p throughout the grid

Optimal grids are automatically generated by the hp-algorithm

The self-adaptive goal-oriented $h p-F E M$ provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of interest

Dual-Laterolog (DLL)

- Description of Tool

DUAL LATEROLOG - Halliburton Energy Services

- Determination of Intensities $\left(W_{j}\right)$ of Bucking Currents

Post-Processing Method

Synthetic Focusing (Cozzolino et al, 2007)

Total potential on M_{i} \rightarrow Superposition principle $V\left(M_{2}\right)=W_{2} V_{2,2}+W_{1} V_{2,1}+V_{2,0}+W_{1} V_{2,1}+W_{2} V_{2,2}$ $V\left(M_{1}\right)=W_{2} V_{1,2}+W_{1} V_{1,1}+V_{1,0}+W_{1} V_{1,1,1}+W_{2} V_{1,2}$. $V\left(M_{1}\right)=W_{2} V_{1,2}+W_{1} V_{1,1}+V_{1,0}+W_{1} V_{1,1}+W_{2} V_{1,2}$. $V\left(M_{2}\right)=W_{2} V_{2,2}+W_{1} V_{2,1}+V_{2,0}+W_{1} V_{2,1}+W_{2} V_{2,2}$
(1) Focusing conditions
$V\left(M_{1}\right)=V\left(M_{2}\right)$
$V\left(M_{1}\right)=V\left(M_{2}\right)$
(2) Relationships between W_{j}

$$
W_{2}=\left(W_{1}+c\right), \quad W_{2^{\prime}}=\left(W_{1^{\prime}}+c\right) \text { for } \operatorname{LLd}
$$

$$
W_{2}=-\left(W_{1}+c\right), \quad W_{2^{\prime}}=-\left(W_{1^{\prime}}+c\right) \text { for } \mathrm{LLs}
$$

with $c=0.5$

One problem with several RHSs

Embedded Post-Processing Method (EPPM)

Solving one problem with several RHSs

Simulating the DLL tool

Model

Using the Tool Configuration of Halliburton Energy Services' DLL

Invaded Formation (Vertical Well)

Effects of Invasion: LLs \uparrow

Borehole: 0.1 m in radius
0.1 ohm-m in resistivity

Anisotropic Formation (Vertical Well)

Vertical Well with Anisotropy

Effects of anisotropy: LLs \uparrow

LLd: effects of anisotropy are negligible in conductive layer

3D Methodology and DLL Simulations I

- Deviated Wells
- Non-orthogonal system of coordinates
- Fourier series expansion
- Numerical results
- Eccentered Measurements
- Iterative Solver
- Parallel Implementation

3D Deviated Well

Cartesian system of coordinates: $\left(x_{1}, x_{2}, x_{3}\right)$
New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Subdomain I

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

Subdomain III

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}+\zeta_{1} \tan \theta \cos \zeta_{2}
\end{array}\right.
$$

3D Deviated Well

Cartesian system of coordinates: $\left(x_{1}, x_{2}, x_{3}\right)$
New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Constant material coefficients in the quasi-azimuthal direction ζ_{2} in the new non-orthogonal system of coordinates!!!!

Final Variational Formulation

DC problem: $-\nabla \sigma \nabla u=f$
Define Jacobian: $\mathbf{J}=\left\{\frac{\partial x_{i}}{\zeta_{j}}\right\}_{i, j=1,2,3}$

3D variational formulation in the new system of coordinates:
\int Find $\tilde{u} \in \underline{\tilde{u}}_{D}+\tilde{H}_{D}^{1}(\Omega)$ such that:
$\left\{<\frac{\partial \tilde{v}}{\partial \zeta}, \tilde{\sigma}_{N E W} \frac{\partial \tilde{u}}{\partial \zeta}>_{L^{2}(\Omega)}=<\tilde{v}, \tilde{f}_{N E W}>_{L^{2}(\Omega)}+<\tilde{v}, \tilde{g}_{N E W}>_{L^{2}(\Omega)} \quad \forall \tilde{v} \in \tilde{H}_{D}^{1}(\Omega)\right.$,
where

$$
\tilde{\boldsymbol{\sigma}}_{\text {NEW }}:=\mathbf{J}^{-1} \tilde{\boldsymbol{\sigma}} \mathbf{J}^{-1 T}|\mathbf{J}| \quad \tilde{f}_{\text {NEW }}:=\tilde{f}|\mathbf{J}| \quad \tilde{g}_{N E W}:=\tilde{g}\left|\mathbf{J}_{S}\right|
$$

The same concept can be applied to AC problems

Fourier Series Expansion in ζ_{2}

Fourier Series Expansion of a Function ω in ζ_{2} :

$$
\omega=\sum_{l=-\infty}^{l=\infty} \omega_{l} e^{j l \zeta_{2}}=\sum_{l=-\infty}^{l=\infty} F_{l}(\omega) e^{j l \zeta_{2}}
$$

Final Variational Formulation after Fourier Series Expansion in ζ_{2} :
Find $F_{l}(u) \in F_{l}\left(\underline{u}_{D}\right)+H_{D}^{1}\left(\Omega_{2 D}\right)$ such that:
$\left\{\sum_{k=-=0}^{k=0} \sum_{l=k-2}^{l=k+2}\right\rangle F_{k}\left(\frac{\partial v}{\partial \zeta}\right), F_{k-l}\left(\sigma_{N E W}\right) F_{l}\left(\frac{\partial u}{\partial \zeta}\right)>_{L^{2}\left(\Omega_{2 D}\right)}$
\leftarrow Mono-modal test function:

$$
v=v_{k} e^{j k \zeta_{2}}
$$

$=\sum_{k=-\infty}^{k=\infty}\left\langle<F_{k}(v), F_{k}\left(f_{N E W}\right)>_{L^{2}\left(\Omega_{2 D}\right)}+<F_{k}(v), F_{k}\left(g_{N E W}\right)>_{L^{2}\left(\Omega_{2 D}\right)}\right] \forall F_{k}(v) \in H_{D}^{1}(\Omega)$,
because $F_{k-l}\left(\sigma_{N E W}\right)=0$ for every $|k-l|>2$.
Only Five Fourier Modes (l) are enough to represent $\sigma_{\text {NEW }}$ EXACTLY for each k. Therefore, we need to truncate only Fourier Modes (k) for 3D solution.

Example (9 Fourier Modes)

$$
\begin{aligned}
& \sum_{k=-4}^{k=4} \sum_{l=k-2}^{l=k+2}<F_{k}\left(\frac{\partial v}{\partial \zeta}\right), F_{k-l}\left(\sigma_{N E W}\right) F_{l}\left(\frac{\partial u}{\partial \zeta}\right)>_{L^{2}\left(\Omega_{2 D}\right)} \begin{array}{l}
\text { for the Solution: } \\
-4<k<4
\end{array} \\
&=\sum_{k=-4}^{k=4}\left[\left\langle F_{k}(v), F_{k}\left(f_{N E W}\right)>_{L^{2}\left(\Omega_{2 D}\right)}+\left\langle F_{k}(v), F_{k}\left(g_{N E W}\right)\right\rangle_{L^{2}\left(\Omega_{2 D}\right)}\right]\right.
\end{aligned}
$$

9 Fourier Modes
$\| \sum_{k=-4}^{k=4} \sum_{l=k-2}^{l=k+2} d_{l}^{k} F_{l}(u)=\sum_{k=-4}^{k=4} b_{k}\left(F_{k}(v)\right) \quad d_{l}^{k}:$ represents a 2D stiffiness matrix

$$
\left[\begin{array}{lllllllll}
d_{-4}^{-4} & d_{-3}^{-4} & d_{-2}^{-4} & 0 & 0 & 0 & 0 & 0 & 0 \\
d_{-4}^{-3} & d_{-3}^{-3} & d_{-2}^{-3} & d_{-1}^{-3} & 0 & 0 & 0 & 0 & 0 \\
d_{-4}^{-2} & d_{-3}^{-2} & d_{-2}^{-2} & d_{-1}^{-2} & d_{0}^{-2} & 0 & 0 & 0 & 0 \\
0 & d_{-3}^{-1} & d_{-2}^{-1} & d_{-1}^{-1} & d_{0}^{-1} & d_{1}^{-1} & 0 & 0 & 0 \\
0 & 0 & d_{-2}^{0} & d_{-1}^{0} & d_{0}^{0} & d_{1}^{0} & d_{2}^{0} & 0 & 0 \\
0 & 0 & 0 & d_{-1}^{1} & d_{0}^{1} & d_{1}^{1} & d_{2}^{1} & d_{3}^{1} & 0 \\
0 & 0 & 0 & 0 & d_{0}^{2} & d_{1}^{2} & d_{2}^{2} & d_{3}^{2} & d_{4}^{2} \\
0 & 0 & 0 & 0 & 0 & d_{1}^{3} & d_{2}^{3} & d_{3}^{3} & d_{4}^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & d_{2}^{4} & d_{3}^{4} & d_{4}^{4}
\end{array}\right]\left[\begin{array}{l}
F_{-4}(u) \\
F_{-3}(u) \\
F_{-2}(u) \\
F_{-1}(u) \\
F_{0}(u) \\
F_{1}(u) \\
F_{2}(u) \\
F_{3}(u) \\
F_{4}(u)
\end{array}\right]=\left[\begin{array}{l}
b_{-4} \\
b_{-3} \\
b_{-2} \\
b_{-1} \\
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

Verification of 3D Simulation

$\theta=\mathbf{0 , 3 0}$ and $\mathbf{6 0}$ degrees

Relative errors of laterolog measurements in a homogeneous formation

Reference Solutions: Solutions for 0° deviated well

Convergence History of LLd Logs

Dip angle: 45 degrees

Convergence History of LLd Logs

Dip angle: 45 degrees

Convergence History of LLd Logs

Solutions with 5 and 9 Fourier Modes

Dip angle: 45 degrees

Convergence History of LLd Logs

Solutions with 7 and 9 Fourier Modes

Dip angle: 45 degrees

Deviated Well (60, 45 and 10 degrees)

Effects of dip angle: Thin layer \uparrow

3D Methodology and DLL Simulations II

- Deviated wells
- Eccentered Measurements
- Non-orthogonal system of coordinates
- Fourier series expansion
- Numerical results
- Iterative Solver
- Parallel Implementation

3D Eccentered Well

New non-orthogonal system of coordinates: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$

Subdomain I

$$
\left\{\begin{array}{l}
x_{1}=\rho_{0}+\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

Subdomain II
Subdomain III

$$
\left\{\begin{array}{l}
x_{1}=\frac{\zeta_{1}-\rho_{2}}{\rho_{1}-\rho_{2}} \rho_{0}+\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}=\zeta_{1} \cos \zeta_{2} \\
x_{2}=\zeta_{1} \sin \zeta_{2} \\
x_{3}=\zeta_{3}
\end{array}\right.
$$

Eccentricity

Effects of eccentricity: resistive layer \uparrow

3D Methodology and DLL Simulations III

- Deviated Wells
- Eccentered Measurements
- Iterative Solver
- 2D block Jacobi pre-conditioner
- Numerical results
- Parallel Implementation

Iterative Solver I

Iterative Solver for Fast 3D Simulation:

- 2D Block Jacobi Pre-Conditioner
- Krylov-subspace optimization method (BI-Conjugate Gradient)
system of equations with 9 Fourier modes: (deviated well)

$$
\left[\begin{array}{lllllllll}
d_{-4}^{-4} & d_{-3}^{-4} & d_{-2}^{-4} & 0 & 0 & 0 & 0 & 0 & 0 \\
d_{-4}^{-3} & d_{-3}^{-3} & d_{-2}^{-2} & d_{-1}^{-3} & 0 & 0 & 0 & 0 & 0 \\
d_{-4}^{-2} & d_{-3}^{-2} & d_{-2}^{-2} & d_{-1}^{-2} & d_{0}^{-2} & 0 & 0 & 0 & 0 \\
0 & d_{-3}^{-1} & d_{-2}^{-1} & d_{-1}^{-1} & d_{0}^{-1} & d_{1}^{-1} & 0 & 0 & 0 \\
0 & 0 & d_{-2}^{0} & d_{-1}^{0} & d_{0}^{0} & d_{1}^{0} & d_{2}^{0} & 0 & 0 \\
0 & 0 & 0 & d_{-1}^{1} & d_{0}^{1} & d_{1}^{1} & d_{2}^{1} & d_{3}^{1} & 0 \\
0 & 0 & 0 & 0 & d_{0}^{2} & d_{1}^{2} & d_{2}^{2} & d_{3}^{2} & d_{4}^{2} \\
0 & 0 & 0 & 0 & 0 & d_{1}^{3} & d_{2}^{3} & d_{3}^{3} & d_{4}^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & d_{2}^{4} & d_{3}^{4} & d_{4}^{4}
\end{array}\right]\left[\begin{array}{l}
F_{-4}(u) \\
F_{-3}(u) \\
F_{-2}(u) \\
F_{-1}(u) \\
F_{0}(u) \\
F_{1}(u) \\
F_{2}(u) \\
F_{3}(u) \\
F_{4}(u)
\end{array}\right]=\left[\begin{array}{l}
l_{-4} \\
l_{-3} \\
l_{-2} \\
l_{-1} \\
l_{0} \\
l_{1} \\
l_{2} \\
l_{3} \\
l_{4}
\end{array}\right]
$$

2D Block Jacobi Pre-Conditioner:

$$
\left[\begin{array}{lllllllll}
d_{-4}^{-4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d_{-3}^{-3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d_{-2}^{-2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{-1}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d_{0}^{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d_{1}^{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & d_{2}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{3}^{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{4}^{4}
\end{array}\right]
$$

$d_{l}^{k}:$ represents a 2D stiffiness matrix

Iterative Solver II (results)

$\theta=60$ degrees
7 Fourier modes for solution

The University of Texas at Austin

3D Methodology and DLL Simulations IV

- Deviated wells
- Eccentered Measurements
- Iterative Solver
- Parallel Implementation
- Shared domain decomposition
- Numerical results

3D Parallelization Implementation

Distributed Domain Decomposition

Shared Domain Decomposition!!
 \square

3D Parallelization Implementation

Scalability of the Parallel Multi-Frontal Solver (Direct Solver)

Parallel computations performed on Texas Advance Computing Center (TACC) 60\% relative efficiency up to 200 processors.
Parallel direct solver is $\mathbf{1 2 5}$ times faster on 200 processors.

Conclusions

- We have successfully simulated 3D DLL measurements by combining the use of a Fourier series expansion in a non-orthogonal system of coordinates with a 2D higherorder self-adaptive $h p$ finite element method, and by using an embedded post-processing method.
- Iterative Solver for Fast 3D Simulation.
- Parallelization of Direct Solver

Future Work

- Simulation of Non-Zero Dual-Laterolog Measurements
- Simulation of Highly Eccentered Measurements
- Parallelization of Iterative Solver.
- Multi-Frequency and Time-Domain Simulations
- User Friendly Interface

For setting up DLL tools and formations
For implementing new monitoring conditions

Acknowledgments

Sponsors of UT Austin's consortium on Formation Evaluation:

