Hypocoercivity in a model of aligning self-propelled particles

Amic Frouvelle – CEREMADE – Université Paris Dauphine PSL

Work in collaboration with Emeric Bouin (CEREMADE)

Workshop "Kinetic equation, mathematical physics and probability", BCAM, Bilbao, June 18th 2024

Motivation : aligning self-propelled particles ^{1,2,3}

¹Vicsek *et al.*, *Phys. Rev. Lett.*, 1995 [VCBJ⁺95] ²Degond, Motsch, *M3AS*, 2008 [DM08] ³Degond, F, Liu, *J. Nonlin. Sci.*, 2013 [DFL13]

Particles at positions $X_k = \mathbb{R}^d$ (or a flat torus \mathbb{T}), speeds $V_k \in \mathbb{S}$ (unit sphere), $1 \leq k \leq N$.

$$\begin{cases} \mathrm{d}X_k = c \ V_k \mathrm{d}t \\ \mathrm{d}V_k = -\sum_{j=1}^N \nu_{j,k} \frac{1}{2} \nabla_{V_j} \|V_j - V_k\|^2 \mathrm{d}t + \sqrt{2\sigma} P_{V_k^{\perp}} \circ \mathrm{d}B_{t,k}. \end{cases}$$

Careful : gradients on the sphere (for instance $\nabla_v (\mathbf{u} \cdot \mathbf{v}) = P_{v^{\perp}} \mathbf{u}$), Laplace Beltrami, Stratonovich formulation for brownian motion on the sphere.

Particles at positions $X_k = \mathbb{R}^d$ (or a flat torus \mathbb{T}), speeds $V_k \in \mathbb{S}$ (unit sphere), $1 \leq k \leq N$.

$$\begin{cases} \mathsf{d}X_k = c \, V_k \mathsf{d}t \\ \mathsf{d}V_k = -\sum_{j=1}^N \nu_{j,k} \frac{1}{2} \nabla_{V_j} \|V_j - V_k\|^2 \mathsf{d}t + \sqrt{2\sigma} P_{V_k^{\perp}} \circ \mathsf{d}B_{t,k}. \end{cases}$$

Careful : gradients on the sphere (for instance $\nabla_v(\mathbf{u} \cdot v) = P_{v^{\perp}}\mathbf{u}$), Laplace Beltrami, Stratonovich formulation for brownian motion on the sphere. Change scales : $c = \sigma = 1$. Assumption : $\nu_{j,k} = \frac{\rho}{N} K(X_j - X_k)$, $\int_{\mathbb{R}^d} K(y) dy = 1$.

Particles at positions $X_k = \mathbb{R}^d$ (or a flat torus \mathbb{T}), speeds $V_k \in \mathbb{S}$ (unit sphere), $1 \leq k \leq N$.

$$\begin{cases} \mathrm{d}X_k = c \ V_k \mathrm{d}t \\ \mathrm{d}V_k = -\sum_{j=1}^N \nu_{j,k} \frac{1}{2} \nabla_{V_j} \|V_j - V_k\|^2 \mathrm{d}t + \sqrt{2\sigma} P_{V_k^{\perp}} \circ \mathrm{d}B_{t,k}. \end{cases}$$

Careful : gradients on the sphere (for instance $\nabla_v(\mathbf{u} \cdot v) = P_{v^{\perp}}\mathbf{u}$), Laplace Beltrami, Stratonovich formulation for brownian motion on the sphere. Change scales : $c = \sigma = 1$. Assumption : $\nu_{j,k} = \frac{\rho}{N} K(X_j - X_k)$, $\int_{\mathbb{R}^d} K(y) dy = 1$.

Empirical distribution $f^N = \frac{\rho}{N} \sum_i \delta_{X_i} \otimes \delta_{V_i}$.

$$\mathrm{d}V_{k} = P_{V_{k}^{\perp}} \Big(\int_{\mathbb{T}\times\mathbb{S}} K(x - X_{k}) v \mathrm{d}f^{N}(x, v) \Big) \mathrm{d}t + \sqrt{2} P_{V_{k}^{\perp}} \circ \mathrm{d}B_{t, k}$$

Particles at positions $X_k = \mathbb{R}^d$ (or a flat torus \mathbb{T}), speeds $V_k \in \mathbb{S}$ (unit sphere), $1 \leq k \leq N$.

$$\begin{cases} \mathrm{d}X_k = c \ V_k \mathrm{d}t \\ \mathrm{d}V_k = -\sum_{j=1}^N \nu_{j,k} \frac{1}{2} \nabla_{V_j} \|V_j - V_k\|^2 \mathrm{d}t + \sqrt{2\sigma} P_{V_k^{\perp}} \circ \mathrm{d}B_{t,k}. \end{cases}$$

Careful : gradients on the sphere (for instance $\nabla_v(\mathbf{u} \cdot v) = P_{v^{\perp}}\mathbf{u}$), Laplace Beltrami, Stratonovich formulation for brownian motion on the sphere. Change scales : $c = \sigma = 1$. Assumption : $\nu_{j,k} = \frac{\rho}{N} K(X_j - X_k)$, $\int_{\mathbb{R}^d} K(y) dy = 1$.

Empirical distribution $f^N = \frac{\rho}{N} \sum_i \delta_{X_j} \otimes \delta_{V_j}$.

$$\mathrm{d}V_k = P_{V_{\mu}^{\perp}} K *_{X} J_{f^N} \, \mathrm{d}t + \sqrt{2} P_{V_{\mu}^{\perp}} \circ \mathrm{d}B_{t,k},$$

where for a measure f, its first moment (in v) is denoted $J_f = \int_{\mathbb{S}} v f(v) dv$.

Particles at positions $X_k = \mathbb{R}^d$ (or a flat torus \mathbb{T}), speeds $V_k \in \mathbb{S}$ (unit sphere), $1 \leq k \leq N$.

$$\begin{cases} \mathrm{d}X_k = c \ V_k \mathrm{d}t \\ \mathrm{d}V_k = -\sum_{j=1}^N \nu_{j,k} \frac{1}{2} \nabla_{V_j} \|V_j - V_k\|^2 \mathrm{d}t + \sqrt{2\sigma} P_{V_k^{\perp}} \circ \mathrm{d}B_{t,k}. \end{cases}$$

Careful : gradients on the sphere (for instance $\nabla_v(\mathbf{u} \cdot v) = P_{v^{\perp}}\mathbf{u}$), Laplace Beltrami, Stratonovich formulation for brownian motion on the sphere. Change scales : $c = \sigma = 1$. Assumption : $\nu_{j,k} = \frac{\rho}{N} K(X_j - X_k)$, $\int_{\mathbb{R}^d} K(y) dy = 1$.

Empirical distribution $f^N = \frac{\rho}{N} \sum_i \delta_{X_j} \otimes \delta_{V_j}$.

$$\mathrm{d}V_k = P_{V_{\mu}^{\perp}} K *_{X} J_{f^N} \, \mathrm{d}t + \sqrt{2} P_{V_{\mu}^{\perp}} \circ \mathrm{d}B_{t,k},$$

where for a measure f, its first moment (in v) is denoted $J_f = \int_{\mathbb{S}} v f(v) dv$.

Parameters : N, K, \mathbb{T} , ρ (hidden in f^N).

Mean-field limit ⁴ : convergence of f^N to a density f, solution of a kinetic equation

$$\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^{\perp}}(K *_x J_f)f) = \Delta_v f.$$

⁴Bolley, Cañizo, Carrillo, *Appl. Math. Lett.* 2012 [BCC12] 5

Mean-field limit ⁴ : convergence of f^N to a density f, solution of a kinetic equation

$$\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^{\perp}}(K *_x J_f)f) = \Delta_v f.$$

How to get rid of K ? Use $\frac{1}{\varepsilon_N^d} K(\frac{\cdot}{\varepsilon_N})$ instead, with $\varepsilon_N \to 0$ as $N \to \infty$ (but $\varepsilon_N^d N \to \infty$).

⁴Bolley, Cañizo, Carrillo, *Appl. Math. Lett.* 2012 [BCC12] ₅

Mean-field limit ⁴ : convergence of f^N to a density f, solution of a kinetic equation

 $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^{\perp}}(K *_x J_f)f) = \Delta_v f.$

How to get rid of K? Use $\frac{1}{\varepsilon_N^d} K(\frac{\cdot}{\varepsilon_N})$ instead, with $\varepsilon_N \to 0$ as $N \to \infty$ (but $\varepsilon_N^d N \to \infty$).

Moderate interaction limit expected if the limit kinetic equation is well posed ⁵

 $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^{\perp}} J_f f) = \Delta_v f.$

 \rightarrow Only remaining parameters : the shape of \mathbb{T} , and ρ (hidden in f).

⁴Bolley, Cañizo, Carrillo, *Appl. Math. Lett.* 2012 [BCC12] ⁵Chaintron, Diez, *Kinet. Relat. Models*, 2022 [CD22]

Mean-field limit ⁴ : convergence of f^N to a density f, solution of a kinetic equation

 $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^{\perp}}(K *_x J_f)f) = \Delta_v f.$

How to get rid of K? Use $\frac{1}{\varepsilon_N^d} K(\frac{\cdot}{\varepsilon_N})$ instead, with $\varepsilon_N \to 0$ as $N \to \infty$ (but $\varepsilon_N^d N \to \infty$).

Moderate interaction limit expected if the limit kinetic equation is well posed ⁵

 $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (P_{v^\perp} J_f f) = \Delta_v f.$

 \rightarrow Only remaining parameters : the shape of \mathbb{T} , and ρ (hidden in f).

Theorem : (local in time) existence and uniqueness, initial condition f_0 in $L^{\infty}(\mathbb{R}^d \times \mathbb{S})$.

There exists a unique weak solution in $C([0, T], L^{\infty}(\mathbb{R}^d \times \mathbb{S}))$ for all $T < \frac{1}{(d-1)\|f_0\|_{\infty}}$. It is nonnegative and satisfies the following estimate (maximum principle):

$$\forall t \in [0, T], \qquad \|f(t)\|_{\infty} \leq \|f_0\|_{\infty} + (d-1)\int_0^t \|J_f(s)\|_{\infty} \|f(s)\|_{\infty} \,\mathrm{d}s.$$

⁴Bolley, Cañizo, Carrillo, *Appl. Math. Lett.* 2012 [BCC12] ⁵Chaintron, Diez, *Kinet. Relat. Models*, 2022 [CD22]

The space-homegeneous setting : phase transition ⁶

Fokker–Planck formulation via von Mises distributions, free energy

Define the von Mises distribution $M_J(v) = \frac{e^{vJ}}{\int_{\mathbb{S}} e^{v'J} dv'}$, then

$$\partial_t f = -\nabla_v \cdot (P_{v^{\perp}} J_f f) + \Delta_v f = \nabla_v \cdot \left(M_{J_f} \nabla_v (\frac{f}{M_{J_f}}) \right) = \nabla_v \cdot (f \nabla_v (\ln f - v \cdot J_f)).$$

Dissipation of the free energy $\mathcal{F}[f] = \int_{\mathbb{S}} f \ln f - \frac{1}{2} |J_f|^2$: Fisher information (w.r.t ρM_{J_f}).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = -\mathcal{D} = -\int_{\mathbb{S}} |\nabla_{v}(\ln f - v \cdot J_{f})|^{2} f \mathrm{d}v = -\mathcal{I}(f|\rho M_{J_{f}}).$$

⁶F, Liu SIAM J. Math. Anal., 2012 [FL12]

The space-homegeneous setting : phase transition ⁶

Fokker–Planck formulation via von Mises distributions, free energy

Define the von Mises distribution $M_J(v) = \frac{e^{v \cdot J}}{\int_{\mathbb{S}} e^{v' \cdot J} dv'}$, then

$$\partial_t f = -\nabla_v \cdot (P_{v^{\perp}} J_f f) + \Delta_v f = \nabla_v \cdot \left(M_{J_f} \nabla_v (\frac{f}{M_{J_f}}) \right) = \nabla_v \cdot (f \nabla_v (\ln f - v \cdot J_f)).$$

Dissipation of the free energy $\mathcal{F}[f] = \int_{\mathbb{S}} f \ln f - \frac{1}{2} |J_f|^2$: Fisher information (w.r.t ρM_{J_f}).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = -\mathcal{D} = -\int_{\mathbb{S}} |\nabla_{\mathbf{v}}(\ln f - \mathbf{v} \cdot J_f)|^2 f \mathrm{d}\mathbf{v} = -\mathcal{I}(f|\rho M_{J_f}).$$

Criteria for steady states, compatibility equation.

 $\mathcal{D}[f] = 0 \Leftrightarrow \text{critical point of } \mathcal{F} \text{ under mass } \rho \Leftrightarrow f = \rho M_J, \text{ with } J_{\rho M_J} = \rho \langle v \rangle_{M_J} = J.$

⁶F, Liu SIAM J. Math. Anal., 2012 [FL12]

Fokker–Planck formulation via von Mises distributions, free energy

Define the von Mises distribution $M_J(v) = \frac{e^{v \cdot J}}{\int_{\mathbb{S}} e^{v' \cdot J} dv'}$, then

$$\partial_t f = -\nabla_v \cdot (P_{v^{\perp}} J_f f) + \Delta_v f = \nabla_v \cdot \left(M_{J_f} \nabla_v (\frac{f}{M_{J_f}}) \right) = \nabla_v \cdot (f \nabla_v (\ln f - v \cdot J_f)).$$

Dissipation of the free energy $\mathcal{F}[f] = \int_{\mathbb{S}} f \ln f - \frac{1}{2} |J_f|^2$: Fisher information (w.r.t ρM_{J_f}).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = -\mathcal{D} = -\int_{\mathbb{S}} |\nabla_{v}(\ln f - v \cdot J_{f})|^{2} f \mathrm{d}v = -\mathcal{I}(f|\rho M_{J_{f}}).$$

Criteria for steady states, compatibility equation.

 $\mathcal{D}[f] = 0 \Leftrightarrow \text{ critical point of } \mathcal{F} \text{ under mass } \rho \Leftrightarrow f = \rho M_J, \text{ with } J_{\rho M_J} = \rho \langle v \rangle_{M_J} = J.$ Compatibility equation : $J = \kappa \Omega$ with $\Omega \in \mathbb{S}$ and $\kappa = \rho c(\kappa)$ for $c(\kappa) = \frac{\int_0^{\pi} \cos \theta e^{\kappa \cos \theta} \sin^{d-2} \theta d\theta}{\int_0^{\pi} e^{\kappa \cos \theta} \sin^{d-2} \theta d\theta}.$

⁶F, Liu SIAM J. Math. Anal., 2012 [FL12]

The space-homegeneous setting : phase transition ⁶

Fokker–Planck formulation via von Mises distributions, free energy

Define the von Mises distribution $M_J(v) = \frac{e^{v \cdot J}}{\int_{\mathbb{S}} e^{v' \cdot J} dv'}$, then

$$\partial_t f = -\nabla_v \cdot (P_{v^{\perp}} J_f f) + \Delta_v f = \nabla_v \cdot \left(M_{J_f} \nabla_v (\frac{f}{M_{J_f}}) \right) = \nabla_v \cdot (f \nabla_v (\ln f - v \cdot J_f)).$$

Dissipation of the free energy $\mathcal{F}[f] = \int_{\mathbb{S}} f \ln f - \frac{1}{2} |J_f|^2$: Fisher information (w.r.t ρM_{J_f}).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = -\mathcal{D} = -\int_{\mathbb{S}} |\nabla_{v}(\ln f - v \cdot J_{f})|^{2} f \mathrm{d}v = -\mathcal{I}(f|\rho M_{J_{f}}).$$

Criteria for steady states, compatibility equation.

 $\mathcal{D}[f] = 0 \Leftrightarrow \text{ critical point of } \mathcal{F} \text{ under mass } \rho \Leftrightarrow f = \rho M_J, \text{ with } J_{\rho M_J} = \rho \langle v \rangle_{M_J} = J.$ Compatibility equation : $J = \kappa \Omega$ with $\Omega \in \mathbb{S}$ and $\kappa = \rho c(\kappa)$ for $c(\kappa) = \frac{\int_0^{\pi} \cos \theta e^{\kappa \cos \theta} \sin^{d-2} \theta d\theta}{\int_0^{\pi} e^{\kappa \cos \theta} \sin^{d-2} \theta d\theta}.$

Behaviour : $\frac{\kappa}{c(\kappa)} \nearrow +\infty$ as $\kappa \to +\infty$, and $\searrow \rho_c = d$ as $\kappa \to 0$.

⁶F, Liu SIAM J. Math. Anal., 2012 [FL12]

Stability/instability for the space-homogeneous model

• $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in S$.

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in S$.
- For the inhomogeneous model, the homogeneous steady states are the same. Can we say something about their stability ?

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in \mathbb{S}$.
- For the inhomogeneous model, the homogeneous steady states are the same. Can we say something about their stability ?
- Interplay between transport and an operator relaxing in v only : hypocoercivity approach.

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in \mathbb{S}$.
- For the inhomogeneous model, the homogeneous steady states are the same. Can we say something about their stability ?
- Interplay between transport and an operator relaxing in v only : hypocoercivity approach.
- We concentrate on $\rho < \rho_c$, write $f = \rho + g$, with g small (of zero average if on \mathbb{T}) :

$$\partial_t g + v \cdot \nabla_{\mathsf{x}} g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_{\mathsf{v}} g = \Delta_{\mathsf{v}} g.$$

Stability/instability for the space-homogeneous model

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in S$.
- For the inhomogeneous model, the homogeneous steady states are the same. Can we say something about their stability ?
- Interplay between transport and an operator relaxing in v only : hypocoercivity approach.
- We concentrate on $\rho < \rho_c$, write $f = \rho + g$, with g small (of zero average if on \mathbb{T}) :

 $\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$

Main result (spoiler) : it is stable ! In $H^{s,1}$ norm (s derivatives in x, one in v).

Assume that $s \ge d$ if d is odd or $s \ge d+1$ if d is even. If $g_0 \in L^{\infty}(\mathbb{R}^d \times \mathbb{S}) \cap H^{s,1}(\mathbb{R}^d \times \mathbb{S})$ is small, the solution is global. There exists an energy, equivalent to the $H^{s,1}(\mathbb{R}^d \times \mathbb{S})$ norm of g, that decays in time. On \mathbb{T} , the energy is exponentially decreasing.

⁷

Stability/instability for the space-homogeneous model

- $\rho \leq \rho_c$: only solution $\kappa = 0$. Isotropic state, stable (exponentially if $\rho < \rho_c$).
- $\rho > \rho_c$: either $\kappa = 0$ (isotropic state, unstable), or a solution $\kappa(\rho) > 0$. If $J_{f^0} \neq 0$, exponential convergence of f to $\rho M_{\kappa(\rho)\Omega_{\infty}}$ for some $\Omega_{\infty} \in S$.
- For the inhomogeneous model, the homogeneous steady states are the same. Can we say something about their stability ?
- Interplay between transport and an operator relaxing in v only : hypocoercivity approach.
- We concentrate on $\rho < \rho_c$, write $f = \rho + g$, with g small (of zero average if on \mathbb{T}) :

 $\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$

Main result (spoiler) : it is stable ! In $H^{s,1}$ norm (s derivatives in x, one in v).

Assume that $s \ge d$ if d is odd or $s \ge d+1$ if d is even. If $g_0 \in L^{\infty}(\mathbb{R}^d \times \mathbb{S}) \cap H^{s,1}(\mathbb{R}^d \times \mathbb{S})$ is small, the solution is global. There exists an energy, equivalent to the $H^{s,1}(\mathbb{R}^d \times \mathbb{S})$ norm of g, that decays in time. On \mathbb{T} , the energy is exponentially decreasing.

• Related work⁷ for BGK instead of Fokker-Planck : $\partial_t f + v \cdot \nabla_x f = \rho_f M_{J_f} - f$.

⁷Merino-Aceituno, Schmeiser, Winter *ArXiv* 2024 [MASW24]

Back to basics : one particle (Velocity Spherical Brownian Motion¹⁰)

A single self-propelled particle exploring around, no interaction.

$$X \in \mathbb{R}^d ext{ (or } \mathbb{T}), \ V \in \mathbb{S}, \begin{cases} dX = V dt \\ dV = P_{v^\perp} \circ dB_t. \end{cases}$$

Its law satisfies $\partial_t f + v \cdot \nabla_x f = \Delta_v f$.

8 9 ¹⁰Baudoin, Tardif, *KRM* 2018 [BT18]

A single self-propelled particle exploring around, no interaction.

$$X \in \mathbb{R}^d \text{ (or } \mathbb{T}), \ V \in \mathbb{S}, \begin{cases} dX = V dt \\ dV = P_{v^{\perp}} \circ dB_t. \end{cases} \text{ Its law satisfies } \partial_t f + v \cdot \nabla_x f = \Delta_v f.$$

Looks simple, can't we do à la Villani⁸ ? Define an energy equivalent to the square of the H^1 norm (if $\beta < \alpha \gamma$) : $\mathcal{F} = \|f\|_2^2 + \alpha \|\nabla_v f\|_2^2 + 2\beta \langle \nabla_v f, \nabla_x f \rangle + \gamma \|\nabla_x f\|_2^2$, and then get

$$\begin{aligned} \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}t} &= -2\|\nabla_{v}f\|^{2} + 2\alpha\langle\nabla_{v}f,\nabla_{v}(\Delta_{v}f)\rangle + 2\beta\|P_{v^{\perp}}\nabla_{x}f\|_{2}^{2} + 2\gamma\langle\nabla_{x}f,\nabla_{x}(\Delta_{v}f)\rangle \text{ (good terms)} \\ &-2\alpha\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\beta[(d-1)\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\langle\nabla_{v}f,\nabla_{x}(\Delta_{v}f)\rangle]. \text{ (bad terms)} \end{aligned}$$

Trouble or not ?

⁸Villani, 2009 [Vil09]

9

¹⁰Baudoin, Tardif, *KRM* 2018 [BT18]

A single self-propelled particle exploring around, no interaction.

$$X \in \mathbb{R}^d \text{ (or } \mathbb{T}), \ V \in \mathbb{S}, \begin{cases} dX = V dt \\ dV = P_{v^{\perp}} \circ dB_t. \end{cases} \text{ Its law satisfies } \partial_t f + v \cdot \nabla_x f = \Delta_v f.$$

Looks simple, can't we do à la Villani⁸? Define an energy equivalent to the square of the H^1 norm (if $\beta < \alpha \gamma$): $\mathcal{F} = \|f\|_2^2 + \alpha \|\nabla_v f\|_2^2 + 2\beta \langle \nabla_v f, \nabla_x f \rangle + \gamma \|\nabla_x f\|_2^2$, and then get

$$\begin{aligned} \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}t} &= -2\|\nabla_{v}f\|^{2} + 2\alpha\langle\nabla_{v}f,\nabla_{v}(\Delta_{v}f)\rangle + 2\beta\|P_{v^{\perp}}\nabla_{x}f\|_{2}^{2} + 2\gamma\langle\nabla_{x}f,\nabla_{x}(\Delta_{v}f)\rangle \text{ (good terms)} \\ &-2\alpha\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\beta[(d-1)\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\langle\nabla_{v}f,\nabla_{x}(\Delta_{v}f)\rangle]. \text{ (bad terms)} \end{aligned}$$

Trouble or not ? Good terms are indeed equivalent to H^2 norm (for a mean-zero function f), but that's not trivial to recover the missing $||v \cdot \nabla_x f||_2^2$.

¹⁰Baudoin, Tardif, *KRM* 2018 [BT18]

⁸Villani, 2009 [Vil09]

⁹

A single self-propelled particle exploring around, no interaction.

$$X \in \mathbb{R}^d \text{ (or } \mathbb{T}), \ V \in \mathbb{S}, \begin{cases} dX = V dt \\ dV = P_{v^{\perp}} \circ dB_t. \end{cases} \text{ Its law satisfies } \partial_t f + v \cdot \nabla_x f = \Delta_v f.$$

Looks simple, can't we do à la Villani⁸? Define an energy equivalent to the square of the H^1 norm (if $\beta < \alpha \gamma$) : $\mathcal{F} = \|f\|_2^2 + \alpha \|\nabla_v f\|_2^2 + 2\beta \langle \nabla_v f, \nabla_x f \rangle + \gamma \|\nabla_x f\|_2^2$, and then get

$$\begin{aligned} \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}t} &= -2\|\nabla_{v}f\|^{2} + 2\alpha\langle\nabla_{v}f,\nabla_{v}(\Delta_{v}f)\rangle + 2\beta\|P_{v^{\perp}}\nabla_{x}f\|_{2}^{2} + 2\gamma\langle\nabla_{x}f,\nabla_{x}(\Delta_{v}f)\rangle \text{ (good terms)} \\ &-2\alpha\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\beta[(d-1)\langle\nabla_{v}f,\nabla_{x}f\rangle - 2\langle\nabla_{v}f,\nabla_{x}(\Delta_{v}f)\rangle]. \text{ (bad terms)} \end{aligned}$$

Trouble or not ? Good terms are indeed equivalent to H^2 norm (for a mean-zero function f), but that's not trivial to recover the missing $\|v \cdot \nabla_x f\|_2^2$. Furthermore, if we want a quantitative regularising estimate for short times à la Hérau⁹ (that

is (α, β, γ) replaced by $(\alpha t, \beta t^2, \gamma t^3)$ it does not work. Why ?

⁸Villani, 2009 [Vil09]

⁹Hérau, JFA 2007 [Hé07]

¹⁰Baudoin, Tardif, KRM 2018 [BT18]

The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as $\partial_t f + Tf = A^2 f$.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write $A_{i,j} = [e_i \cdot \nabla_v, e_j \cdot \nabla_v]$ (in coordinates where $v = \cos\theta w + \sin\theta(\cos\varphi_{i,j}e_i + \sin\varphi_{i,j}e_j)$ with $w \in \mathbb{S}$, $w \perp e_i$, $w \perp e_j$, it reads $A_{i,j} = \partial_{\varphi_{i,j}}$). Then, writing $A^2 = \sum_{i < i} A_{i,j}^2$:

- $A_{i,j}$ is antiselfadjoint on \mathbb{S} , and commutes with A^2 , and $A_{i,j}v_k = \delta_{jk}v_i \delta_{ik}v_j$.
- If $f, g \in C^1(\mathbb{S})$, then $\nabla_v f \cdot \nabla_v g = \sum_{i < j} A_{i,j} f A_{i,j} g$. Consequently $\Delta_v f = A^2 f$.

The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as $\partial_t f + Tf = A^2 f$.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write $A_{i,j} = [e_i \cdot \nabla_v, e_j \cdot \nabla_v]$ (in coordinates where $v = \cos\theta w + \sin\theta(\cos\varphi_{i,j}e_i + \sin\varphi_{i,j}e_j)$ with $w \in \mathbb{S}$, $w \perp e_i$, $w \perp e_j$, it reads $A_{i,j} = \partial_{\varphi_{i,j}}$). Then, writing $A^2 = \sum_{i < i} A_{i,j}^2$:

• $A_{i,j}$ is antiselfadjoint on S, and commutes with A^2 , and $A_{i,j}v_k = \delta_{jk}v_i - \delta_{ik}v_j$.

• If
$$f, g \in C^1(\mathbb{S})$$
, then $\nabla_v f \cdot \nabla_v g = \sum_{i < j} A_{i,j} f A_{i,j} g$. Consequently $\Delta_v f = A^2 f$.

Evolution of quadratic quantities and commutators

Write $T = v \cdot \nabla_x$. If X is a smooth differential operator and $Q_X = \int_{\mathbb{R}^d \times \mathbb{S}} f X f \, dx dv$, then $\frac{d}{dt} Q_X = Q_{\Phi(X)}$, where the operator $\Phi(X)$ goes as follows:

$$\Phi(X) = A^2 X + XA^2 + [T, X] = 2AXA + [A[A, X]] + [T, X].$$

Villani's chain of commutators : start from $C_0 = A$ and then $C_{i+1} = [T, C_i]$, hoping to get all the missing "directions". Here it stops at $C_1 = [T, A] := S = -v \land \nabla_x$, since then [T, S] = 0.

The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as $\partial_t f + Tf = A^2 f$.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write $A_{i,j} = [e_i \cdot \nabla_v, e_j \cdot \nabla_v]$ (in coordinates where $v = \cos\theta w + \sin\theta(\cos\varphi_{i,j}e_i + \sin\varphi_{i,j}e_j)$ with $w \in \mathbb{S}$, $w \perp e_i$, $w \perp e_j$, it reads $A_{i,j} = \partial_{\varphi_{i,j}}$). Then, writing $A^2 = \sum_{i < i} A_{i,j}^2$:

• $A_{i,j}$ is antiselfadjoint on S, and commutes with A^2 , and $A_{i,j}v_k = \delta_{jk}v_i - \delta_{ik}v_j$.

• If
$$f, g \in C^1(\mathbb{S})$$
, then $\nabla_v f \cdot \nabla_v g = \sum_{i < j} A_{i,j} f A_{i,j} g$. Consequently $\Delta_v f = A^2 f$.

Evolution of quadratic quantities and commutators

Write $T = v \cdot \nabla_x$. If X is a smooth differential operator and $Q_X = \int_{\mathbb{R}^d \times \mathbb{S}} f X f \, dx dv$, then $\frac{d}{dt} Q_X = Q_{\Phi(X)}$, where the operator $\Phi(X)$ goes as follows:

$$\Phi(X) = A^2 X + XA^2 + [T, X] = 2AXA + [A[A, X]] + [T, X].$$

Villani's chain of commutators : start from $C_0 = A$ and then $C_{i+1} = [T, C_i]$, hoping to get all the missing "directions". Here it stops at $C_1 = [T, A] := S = -v \land \nabla_x$, since then [T, S] = 0. \rightarrow Hörmander theory : commute as you can ! We get [A, S] = (d - 1)T. And we are happy since $T^2 + S^2 = \Delta_x$.

We will always take operators X composed thanks to A (weight $\frac{1}{2}$), S (weight $\frac{3}{2}$) and Δ_x (weight 4). Weights of compositions are the sum of weights.

We will always take operators X composed thanks to A (weight $\frac{1}{2}$), S (weight $\frac{3}{2}$) and Δ_x (weight 4). Weights of compositions are the sum of weights.

Theorem : a good H^1 energy for short-time estimates.

Set $\mathcal{F}_0 = Q_{\text{Id}}$, $\mathcal{F}_1(\tau, \cdot) = \alpha \tau Q_{-A^2} + \beta \tau^2 Q_{\text{SA}+\text{AS}} + \gamma \tau^3 Q_{-S^2} + \delta \tau^4 Q_{-\Delta_x}$. Then there exists coefficients α, β, γ such that $\mathcal{F}(t) = \mathcal{F}_0 + \mathcal{F}_1(\min(t, 1), f)$ is decreasing in time. Furthermore, on \mathbb{T} , this quantity is equivalent to the H^1 norm of f if f has mean zero, and is controlled by its dissipation at positive time, leading to an exponential decay.

We will always take operators X composed thanks to A (weight $\frac{1}{2}$), S (weight $\frac{3}{2}$) and Δ_x (weight 4). Weights of compositions are the sum of weights.

Theorem : a good H^1 energy for short-time estimates.

Set $\mathcal{F}_0 = Q_{\text{Id}}, \mathcal{F}_1(\tau, \cdot) = \alpha \tau Q_{-A^2} + \beta \tau^2 Q_{\text{SA}+\text{AS}} + \gamma \tau^3 Q_{-S^2} + \delta \tau^4 Q_{-\Delta_x}$. Then there exists coefficients α, β, γ such that $\mathcal{F}(t) = \mathcal{F}_0 + \mathcal{F}_1(\min(t, 1), f)$.

Then there exists coefficients α, β, γ such that $\mathcal{F}(t) = \mathcal{F}_0 + \mathcal{F}_1(\min(t, 1), f)$ is decreasing in time. Furthermore, on \mathbb{T} , this quantity is equivalent to the H^1 norm of f if f has mean zero, and is controlled by its dissipation at positive time, leading to an exponential decay.

Remark : $\mathcal{F}_0 = \|\cdot\|_2^2$, and $\mathcal{F}_1(\tau, \cdot) = \alpha \tau \|\nabla_v\|_2^2 + 2\beta \tau^2 \langle \nabla_v |\nabla_x \rangle + \gamma \tau^3 \|P_{v^{\perp}} \nabla_x\|_2^2 + \delta \tau^4 \|\nabla_x\|_2^2$. We then get that the H^1 norm is controlled by $\frac{1}{t^2} \|f_0\|_2$ for short times (to compare with $\frac{1}{t^2}$ for usual kinetic Fokker-Planck equations).

We will always take operators X composed thanks to A (weight $\frac{1}{2}$), S (weight $\frac{3}{2}$) and Δ_x (weight 4). Weights of compositions are the sum of weights.

Theorem : a good H^1 energy for short-time estimates.

Set $\mathcal{F}_0 = Q_{\text{Id}}$, $\mathcal{F}_1(\tau, \cdot) = \alpha \tau Q_{-A^2} + \beta \tau^2 Q_{\text{SA}+\text{AS}} + \gamma \tau^3 Q_{-S^2} + \delta \tau^4 Q_{-\Delta_x}$. Then there exists coefficients α, β, γ such that $\mathcal{F}(t) = \mathcal{F}_0 + \mathcal{F}_1(\min(t, 1), f)$ is decreasing in time. Furthermore, on \mathbb{T} , this quantity is equivalent to the H^1 norm of f if f has mean zero,

and is controlled by its dissipation at positive time, leading to an exponential decay.

Remark : $\mathcal{F}_0 = \|\cdot\|_2^2$, and $\mathcal{F}_1(\tau, \cdot) = \alpha \tau \|\nabla_v\|_2^2 + 2\beta \tau^2 \langle \nabla_v |\nabla_x \rangle + \gamma \tau^3 \|P_{v^\perp} \nabla_x\|_2^2 + \delta \tau^4 \|\nabla_x\|_2^2$. We then get that the H^1 norm is controlled by $\frac{1}{t^2} \|f_0\|_2$ for short times (to compare with $\frac{1}{t^{\frac{3}{2}}}$ for usual kinetic Fokker-Planck equations). Higher order (in x only) : $\mathcal{F}_k(\tau, \cdot) = \nu_k \tau^{4(k-1)} \sum_{|m|=k-1} {k-1 \choose m} \mathcal{F}_1(\tau, \partial_x^m)$.

¹¹Coti-Zelati, Dietert, Gérard-Varet, Annals of PDE, 2023 [CZDGV23]

We will always take operators X composed thanks to A (weight $\frac{1}{2}$), S (weight $\frac{3}{2}$) and Δ_x (weight 4). Weights of compositions are the sum of weights.

Theorem : a good H^1 energy for short-time estimates.

Set $\mathcal{F}_0 = Q_{\mathsf{Id}}$, $\mathcal{F}_1(\tau, \cdot) = \alpha \tau Q_{-\mathsf{A}^2} + \beta \tau^2 Q_{\mathsf{S}\mathsf{A}+\mathsf{A}\mathsf{S}} + \gamma \tau^3 Q_{-\mathsf{S}^2} + \delta \tau^4 Q_{-\Delta_x}$.

Then there exists coefficients α, β, γ such that $\mathcal{F}(t) = \mathcal{F}_0 + \mathcal{F}_1(\min(t, 1), f)$ is decreasing in time. Furthermore, on \mathbb{T} , this quantity is equivalent to the H^1 norm of f if f has mean zero, and is controlled by its dissipation at positive time, leading to an exponential decay.

Remark : $\mathcal{F}_0 = \|\cdot\|_2^2$, and $\mathcal{F}_1(\tau, \cdot) = \alpha \tau \|\nabla_v\|_2^2 + 2\beta \tau^2 \langle \nabla_v |\nabla_x \rangle + \gamma \tau^3 \|\mathcal{P}_{v^\perp} \nabla_x\|_2^2 + \delta \tau^4 \|\nabla_x\|_2^2$. We then get that the H^1 norm is controlled by $\frac{1}{t^2} \|f_0\|_2$ for short times (to compare with $\frac{1}{t^{\frac{3}{2}}}$ for usual kinetic Fokker-Planck equations).

Higher order (in x only) :
$$\mathcal{F}_k(\tau, \cdot) = \nu_k \tau^{4(k-1)} \sum_{|m|=k-1} {\binom{k-1}{m}} \mathcal{F}_1(\tau, \partial_x^m).$$

In the case of the torus in space (and d = 3), see also the recent work on the model of Saintillan–Shelley model¹¹.

¹¹Coti-Zelati, Dietert, Gérard-Varet, Annals of PDE, 2023 [CZDGV23]

Our equation on the perturbation $g (f = \rho + g)$:

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

Our equation on the perturbation g $(f = \rho + g)$:

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have

Our equation on the perturbation g $(f = \rho + g)$:

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have • $\bigcup^2 g = -(d-1)dv \cdot J_g$

Our equation on the perturbation g $(f = \rho + g)$:

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have

• $U^2g = -(d-1)dv \cdot J_g$

•
$$UA = AU = U^2$$
, and therefore $A^2 - U^2 = (A - U)^2$.

Our equation on the perturbation g ($f = \rho + g$) :

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have

• $U^2g = -(d-1)dv \cdot J_g$

•
$$UA = AU = U^2$$
, and therefore $A^2 - U^2 = (A - U)^2$.

•
$$AU^2 = U^2A = A^2U = UA^2 = U^3 = -(d-1)U.$$

Our equation on the perturbation g $(f = \rho + g)$:

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have

•
$$U^2g = -(d-1)dv \cdot J_g$$

•
$$UA = AU = U^2$$
, and therefore $A^2 - U^2 = (A - U)^2$.

•
$$AU^2 = U^2A = A^2U = UA^2 = U^3 = -(d-1)U.$$

•
$$J_g \cdot \nabla_{\mathsf{v}} g = \frac{1}{d} \sum_{i < j} \mathsf{U}_{i,j} g \mathsf{A}_{i,j} g.$$

Our equation on the perturbation g ($f = \rho + g$) :

$$\partial_t g + v \cdot \nabla_x g - (\rho + g)(d - 1)v \cdot J_g + J_g \cdot \nabla_v g = \Delta_v g.$$

A new operator (not differential)

We define $\bigcup_{i,j}g = d(v_i e_j \cdot J_g - v_j e_i \cdot J_g)$ (or in condensed form $\bigcup g = dv \wedge J_g$). We have

•
$$U^2g = -(d-1)dv \cdot J_g$$

•
$$UA = AU = U^2$$
, and therefore $A^2 - U^2 = (A - U)^2$.

•
$$AU^2 = U^2A = A^2U = UA^2 = U^3 = -(d-1)U.$$

•
$$J_g \cdot \nabla_{\mathsf{v}} g = \frac{1}{d} \sum_{i < j} \mathsf{U}_{i,j} g \mathsf{A}_{i,j} g.$$

We then get

$$\partial_t g + \mathsf{T}g = \mathsf{A}^2 g - \frac{\rho + g}{d} \mathsf{U}^2 g - \frac{1}{d} \mathsf{U}g \,\mathsf{A}g = \big(\mathsf{A}^2 - \frac{\rho}{d} \mathsf{U}^2\big)g - \frac{1}{d}(\mathsf{A}(g \mathsf{U}g)).$$

To simplify notations, we note $L = A - (1 - \sqrt{1 - \frac{\rho}{d}}) U$, so that $L^2 = A^2 - \frac{\rho}{d}U^2$.

$$\partial_t g + \mathsf{T}g = \mathsf{L}^2 g - \frac{1}{d}(\mathsf{A}(g \cup g)).$$

Same functional $\mathcal{F}(\tau, g(t, \cdot))$, new terms in the dissipation.

$$\label{eq:phi} \begin{split} \frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathsf{X}} &= Q_{\Phi^{\rho}(\mathsf{X})} + R_{\mathsf{X}}, \text{ where this time} \\ \Phi^{\rho}(\mathsf{X}) &= \mathsf{A}^{2}\mathsf{X} + \mathsf{X}\mathsf{A}^{2} - \frac{\rho}{d}(\mathsf{U}^{2}\mathsf{X} + \mathsf{X}\mathsf{U}^{2}) + [\mathsf{T},\mathsf{X}] = \mathsf{L}^{2}\mathsf{X} + \mathsf{X}\mathsf{L}^{2} + [\mathsf{T},\mathsf{X}], \end{split}$$

and where the non-linear term produces

$$R_{\mathsf{X}}(g) = \frac{1}{d} \int_{\mathbb{R}^d \times \mathbb{S}} (\mathsf{AX}g) (\mathsf{U}g) g \, \mathsf{vd}x.$$

$$\partial_t g + \mathsf{T}g = \mathsf{L}^2 g - \frac{1}{d}(\mathsf{A}(g \cup g)).$$

Same functional $\mathcal{F}(\tau, g(t, \cdot))$, new terms in the dissipation.

$$\label{eq:phi} \begin{split} \frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathsf{X}} &= Q_{\Phi^{\rho}(\mathsf{X})} + R_{\mathsf{X}}, \text{ where this time} \\ \Phi^{\rho}(\mathsf{X}) &= \mathsf{A}^2\mathsf{X} + \mathsf{X}\mathsf{A}^2 - \frac{\rho}{d}(\mathsf{U}^2\mathsf{X} + \mathsf{X}\mathsf{U}^2) + [\mathsf{T},\mathsf{X}] = \mathsf{L}^2\mathsf{X} + \mathsf{X}\mathsf{L}^2 + [\mathsf{T},\mathsf{X}], \end{split}$$

and where the non-linear term produces

$$R_{\mathsf{X}}(g) = \frac{1}{d} \int_{\mathbb{R}^d \times \mathbb{S}} (\mathsf{AX}g) (\mathsf{U}g) g \, \mathsf{vdx}.$$

Control of the quadratic terms : exactly the same job !

$$\partial_t g + \mathsf{T}g = \mathsf{L}^2 g - \frac{1}{d}(\mathsf{A}(g \cup g)).$$

Same functional $\mathcal{F}(\tau, g(t, \cdot))$, new terms in the dissipation.

$$\label{eq:phi} \begin{split} \frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathsf{X}} &= Q_{\Phi^{\rho}(\mathsf{X})} + R_{\mathsf{X}}, \text{ where this time} \\ \Phi^{\rho}(\mathsf{X}) &= \mathsf{A}^2\mathsf{X} + \mathsf{X}\mathsf{A}^2 - \frac{\rho}{d}(\mathsf{U}^2\mathsf{X} + \mathsf{X}\mathsf{U}^2) + [\mathsf{T},\mathsf{X}] = \mathsf{L}^2\mathsf{X} + \mathsf{X}\mathsf{L}^2 + [\mathsf{T},\mathsf{X}], \end{split}$$

and where the non-linear term produces

$$R_{\mathsf{X}}(g) = \frac{1}{d} \int_{\mathbb{R}^d \times \mathbb{S}} (\mathsf{AX}g) (\mathsf{U}g) g \, \mathsf{vdx}.$$

Control of the quadratic terms : exactly the same job !

Control of the cubic terms : a little bit more painful. We control them by $\sqrt{\mathcal{FD}}$. This time, no short-time regularity, we need really high order norms, but only with one derivative in v. This allows to get the nonlinear stability.

$$\partial_t g + \mathsf{T}g = \mathsf{L}^2 g - \frac{1}{d}(\mathsf{A}(g \cup g)).$$

Same functional $\mathcal{F}(\tau, g(t, \cdot))$, new terms in the dissipation.

$$\label{eq:phi} \begin{split} \frac{\mathrm{d}}{\mathrm{d}t}Q_{\mathsf{X}} &= Q_{\Phi^{\rho}(\mathsf{X})} + R_{\mathsf{X}}, \text{ where this time} \\ \Phi^{\rho}(\mathsf{X}) &= \mathsf{A}^2\mathsf{X} + \mathsf{X}\mathsf{A}^2 - \frac{\rho}{d}(\mathsf{U}^2\mathsf{X} + \mathsf{X}\mathsf{U}^2) + [\mathsf{T},\mathsf{X}] = \mathsf{L}^2\mathsf{X} + \mathsf{X}\mathsf{L}^2 + [\mathsf{T},\mathsf{X}], \end{split}$$

and where the non-linear term produces

$$R_{\mathsf{X}}(g) = \frac{1}{d} \int_{\mathbb{R}^d \times \mathbb{S}} (\mathsf{AX}g) (\mathsf{U}g) g \, \mathsf{vdx}.$$

Control of the quadratic terms : exactly the same job !

Control of the cubic terms : a little bit more painful. We control them by $\sqrt{\mathcal{FD}}$. This time, no short-time regularity, we need really high order norms, but only with one derivative in v. This allows to get the nonlinear stability.

Special case : if f only depends on one space variable. Then, by small time regularity, we have stability in $L^2 \cap L^{\infty}$.

Bibliography I

François Bolley, José A. Cañizo, and José A. Carrillo. Mean-field limit for the stochastic Vicsek model. *Appl. Math. Lett.*, 3(25):339–343, 2012.

Fabrice Baudoin and Camille Tardif.

Hypocoercive estimates on foliations and velocity spherical Brownian motion. *Kinet. Relat. Models*, 11(1):1–23, 2018.

Louis-Pierre Chaintron and Antoine Diez.

Propagation of chaos: a review of models, methods and applications. II: Applications. *Kinet. Relat. Models*, 15(6):1017–1173, 2022.

Michele Coti Zelati, Helge Dietert, and David Gérard-Varet. Orientation Mixing in Active Suspensions. *Annals of PDE*, 9(2):20, October 2023.

Pierre Degond, Amic Frouvelle, and Jian-Guo Liu.

Macroscopic limits and phase transition in a system of self-propelled particles.

J. Nonlinear Sci., 23(3):427-456, 2013.

Bibliography II

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction. *Math. Models Methods Appl. Sci.*, 18:1193–1215, 2008.

Amic Frouvelle and Jian-Guo Liu.

Dynamics in a kinetic model of oriented particles with phase transition. *SIAM J. Math. Anal.*, 44(2):791–826, 2012.

Frédéric Hérau.

Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. *J. Funct. Anal.*, 244(1):95–118, 2007.

Sara Merino-Aceituno, Christian Schmeiser, and Raphael Winter.

Stability of equilibria of the spatially inhomogeneous Vicsek-BGK equation across a bifurcation, 2024.

Cédric Villani.

Hypocoercivity, volume 950.

Providence, RI: American Mathematical Society (AMS), 2009.

Thanks