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Motivation : aligning self-propelled particles 1,2,3

1Vicsek et al., Phys. Rev. Lett., 1995 [VCBJ+95]
2Degond, Motsch, M3AS, 2008 [DM08]
3Degond, F, Liu, J. Nonlin. Sci., 2013 [DFL13]
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The self-propelled particles model

System of coupled SDEs

Particles at positions Xk = Rd (or a flat torus T), speeds Vk ∈ S (unit sphere), 1 ⩽ k ⩽ N.
dXk = c Vkdt

dVk = −
N∑

j=1
νj ,k

1
2∇Vj∥Vj − Vk∥2dt +

√
2σPV⊥k

◦ dBt,k .

Careful : gradients on the sphere (for instance ∇v (u · v) = Pv⊥u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.

Change scales : c = σ = 1. Assumption : νj ,k =
ρ
N K(Xj − Xk),

∫
Rd K(y)dy = 1.

Empirical distribution f N = ρ
N

∑
j
δXj ⊗ δVj .

Parameters : N, K , T, ρ (hidden in f N).
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The mean-field or moderate interaction limit

Mean-field limit 4 : convergence of f N to a density f , solution of a kinetic equation

∂t f + v · ∇x f +∇v · (Pv⊥(K ∗x Jf )f ) = ∆v f .

How to get rid of K ? Use 1
εdN

K( ·εN ) instead, with εN → 0 as N →∞ (but εdNN →∞).

Moderate interaction limit expected if the limit kinetic equation is well posed 5

∂t f + v · ∇x f +∇v · (Pv⊥Jf f ) = ∆v f .

→ Only remaining parameters : the shape of T, and ρ (hidden in f ).

Theorem : (local in time) existence and uniqueness, initial condition f0 in L∞(Rd × S).

There exists a unique weak solution in C([0,T ],L∞(Rd × S)) for all T < 1
(d−1)∥f0∥∞ . It is

nonnegative and satisfies the following estimate (maximum principle):

∀t ∈ [0,T ], ∥f (t)∥∞ ⩽ ∥f0∥∞ + (d − 1)
∫ t

0
∥Jf (s)∥∞∥f (s)∥∞ ds.

4Bolley, Cañizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
5
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4Bolley, Cañizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
5Chaintron, Diez, Kinet. Relat. Models, 2022 [CD22]
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The space-homegeneous setting : phase transition 6

Fokker–Planck formulation via von Mises distributions, free energy

Define the von Mises distribution MJ(v) = ev ·J∫
S
ev ′ ·Jdv ′

, then

∂t f = −∇v · (Pv⊥Jf f ) + ∆v f = ∇v ·
(
MJf∇v (

f
MJf

)
)
= ∇v · (f∇v (ln f − v · Jf )).

Dissipation of the free energy F [f ] =
∫
S f ln f − 1

2 |Jf |2 : Fisher information (w.r.t ρMJf ).

d
dt
F = −D = −

∫
S
|∇v (ln f − v · Jf )|2f dv = −I(f |ρMJf ).

Criteria for steady states, compatibility equation.

D[f ] = 0⇔ critical point of F under mass ρ⇔ f = ρMJ , with JρMJ = ρ⟨v⟩MJ = J.

Compatibility equation : J = κΩ with Ω ∈ S and κ = ρc(κ) for c(κ) =

∫ π
0

cos θeκ cos θ sind−2 θdθ∫ π
0

eκ cos θ sind−2 θdθ
.

Behaviour : κ
c(κ) ↗ +∞ as κ→ +∞, and ↘ ρc = d as κ→ 0.

6F, Liu SIAM J. Math. Anal., 2012 [FL12]
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Our main goal : around isotropic state, ρ < ρc = d

Stability/instability for the space-homogeneous model

ρ ⩽ ρc : only solution κ = 0. Isotropic state, stable (exponentially if ρ < ρc).

ρ > ρc : either κ = 0 (isotropic state, unstable), or a solution κ(ρ) > 0. If Jf 0 ̸= 0,
exponential convergence of f to ρMκ(ρ)Ω∞ for some Ω∞ ∈ S.

For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?

Interplay between transport and an operator relaxing in v only : hypocoercivity approach.

We concentrate on ρ < ρc , write f = ρ+ g, with g small (of zero average if on T) :

∂tg + v · ∇xg − (ρ+ g)(d − 1)v · Jg + Jg · ∇vg = ∆vg.

Main result (spoiler) : it is stable ! In Hs,1 norm (s derivatives in x , one in v).

Assume that s ⩾ d if d is odd or s ⩾ d + 1 if d is even. If g0 ∈ L∞(Rd × S)∩Hs,1(Rd × S) is
small, the solution is global. There exists an energy, equivalent to the Hs,1(Rd × S) norm
of g, that decays in time. On T, the energy is exponentially decreasing.

Related work7 for BGK instead of Fokker-Planck : ∂t f + v · ∇x f = ρf MJf − f .

7
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We concentrate on ρ < ρc , write f = ρ+ g, with g small (of zero average if on T) :

∂tg + v · ∇xg − (ρ+ g)(d − 1)v · Jg + Jg · ∇vg = ∆vg.

Main result (spoiler) : it is stable ! In Hs,1 norm (s derivatives in x , one in v).

Assume that s ⩾ d if d is odd or s ⩾ d + 1 if d is even. If g0 ∈ L∞(Rd × S)∩Hs,1(Rd × S) is
small, the solution is global. There exists an energy, equivalent to the Hs,1(Rd × S) norm
of g, that decays in time. On T, the energy is exponentially decreasing.

Related work7 for BGK instead of Fokker-Planck : ∂t f + v · ∇x f = ρf MJf − f .
7Merino-Aceituno, Schmeiser, Winter ArXiv 2024 [MASW24]
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Back to basics : one particle (Velocity Spherical Brownian Motion10)

A single self-propelled particle exploring around, no interaction.

X ∈ Rd (or T), V ∈ S,

{
dX = V dt

dV = Pv⊥ ◦ dBt .
Its law satisfies ∂t f + v · ∇x f = ∆v f .

Looks simple, can’t we do à la Villani8 ? Define an energy equivalent to the square of the H1

norm (if β < αγ) : F = ∥f ∥22 + α∥∇v f ∥22 + 2β⟨∇v f ,∇x f ⟩+ γ∥∇x f ∥22, and then get

dF
dt
= −2∥∇v f ∥2 + 2α⟨∇v f ,∇v (∆v f )⟩+ 2β∥Pv⊥∇x f ∥22 + 2γ⟨∇x f ,∇x(∆v f )⟩ (good terms)

−2α⟨∇v f ,∇x f ⟩ − 2β[(d − 1)⟨∇v f ,∇x f ⟩ − 2⟨∇v f ,∇x(∆v f )⟩]. (bad terms)

Trouble or not ? Good terms are indeed equivalent to H2 norm (for a mean-zero function f ),
but that’s not trivial to recover the missing ∥v · ∇x f ∥22.
Furthermore, if we want a quantitative regularising estimate for short times à la Hérau9 (that
is (α, β, γ) replaced by (αt, βt2, γt3) it does not work. Why ?

8

9

10Baudoin, Tardif, KRM 2018 [BT18]
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The trouble is the sphere — but there is a nice algebraic framework
We want to write our equation as ∂t f + Tf = A2f .

Fancy decomposition of the Laplace-Beltrami on the sphere

Write Ai ,j = [ei · ∇v , ej · ∇v ] (in coordinates where v = cos θw + sin θ(cosϕi ,jei + sinϕi ,jej)

with w ∈ S,w ⊥ ei ,w ⊥ ej , it reads Ai ,j = ∂ϕi ,j ). Then, writing A2 =
∑
i<j

A2
i ,j :

Ai ,j is antiselfadjoint on S, and commutes with A2, and Ai ,jvk = δjkvi − δikvj .

If f , g ∈ C 1(S), then ∇v f · ∇vg =
∑
i<j

Ai,jf Ai,jg. Consequently ∆v f = A2f .

Evolution of quadratic quantities and commutators

Write T = v · ∇x . If X is a smooth differential operator and QX =
∫
Rd×S f Xf dxdv ,

then d
dt QX = QΦ(X), where the operator Φ(X) goes as follows:

Φ(X) = A2X+ XA2 + [T,X] = 2AXA+ [A[A,X]] + [T,X].

Villani’s chain of commutators : start from C0 = A and then Ci+1 = [T,Ci ], hoping to get all
the missing “directions”. Here it stops at C1 = [T,A] := S = −v ∧∇x , since then [T,S] = 0.
→ Hörmander theory : commute as you can ! We get [A,S] = (d − 1)T. And we are happy
since T2 + S2 = ∆x .
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Good hypoellipticity functional à la Hérau

Weights of operators

We will always take operators X composed thanks to A (weight 1
2), S (weight 3

2) and ∆x

(weight 4). Weights of compositions are the sum of weights.

Theorem : a good H1 energy for short-time estimates.

Set F0 = QId, F1(τ, ·) = ατQ−A2 + βτ2QSA+AS + γτ
3Q−S2 + δτ4Q−∆x .

Then there exists coefficients α, β, γ such that F(t) = F0 + F1(min(t, 1), f ) is decreasing in
time. Furthermore, on T, this quantity is equivalent to the H1 norm of f if f has mean zero,
and is controlled by its dissipation at positive time, leading to an exponential decay.

Remark : F0 = ∥ · ∥22, and F1(τ, ·) = ατ∥∇v∥22 + 2βτ2⟨∇v |∇x ⟩+ γτ3∥Pv⊥∇x∥22 + δτ4∥∇x∥22.
We then get that the H1 norm is controlled by 1

t2 ∥f0∥2 for short times (to compare with 1

t
3
2

for usual kinetic Fokker-Planck equations).
Higher order (in x only) : Fk(τ, ·) = νk τ4(k−1) ∑

|m|=k−1

(k−1
m

)
F1(τ, ∂

m
x ).

In the case of the torus in space (and d = 3), see also the recent work on the model of
Saintillan–Shelley model11.

11
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11Coti-Zelati, Dietert, Gérard-Varet, Annals of PDE, 2023 [CZDGV23]
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = ρ+ g) :

∂tg + v · ∇xg − (ρ+ g)(d − 1)v · Jg + Jg · ∇vg = ∆vg.

A new operator (not differential)

We define Ui ,jg = d(vi ej · Jg − vj ei · Jg) (or in condensed form Ug = dv ∧ Jg). We have

U2g = −(d − 1)dv · Jg

UA = AU = U2, and therefore A2 − U2 = (A− U)2.

AU2 = U2A = A2U = UA2 = U3 = −(d − 1)U.

Jg · ∇vg = 1
d

∑
i<j Ui ,jgAi ,jg.
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AU2 = U2A = A2U = UA2 = U3 = −(d − 1)U.

Jg · ∇vg = 1
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∑
i<j Ui ,jgAi ,jg.

We then get

∂tg + Tg = A2g −
ρ+ g

d
U2g −

1
d

Ug Ag =
(
A2 −

ρ

d
U2)

g −
1
d
(A(gUg)).

To simplify notations, we note L = A−
(
1−

√
1− ρ

d

)
U, so that L2 = A2 − ρ

d U2.
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Back to our model, nonlinear part

∂tg + Tg = L2g −
1
d
(A(gUg)).

Same functional F(τ, g(t, ·)), new terms in the dissipation.

d
dt

QX = QΦρ(X) + RX, where this time

Φρ(X) = A2X+ XA2 −
ρ

d
(U2X+ XU2) + [T,X] = L2X+ XL2 + [T,X],

and where the non-linear term produces

RX(g) =
1
d

∫
Rd×S
(AXg) (Ug) g vdx .

Control of the quadratic terms : exactly the same job !

Control of the cubic terms : a little bit more painful. We control them by
√
FD. This time,

no short-time regularity, we need really high order norms, but only with one derivative in v .
This allows to get the nonlinear stability.

Special case : if f only depends on one space variable. Then, by small time regularity, we
have stability in L2 ∩ L∞.
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