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Abstract. We use the mathematical language of sheaf theory to give a unified
treatment of non-locality and contextuality, in a setting that generalizes the
familiar probability tables used in non-locality theory to arbitrary measurement
covers; this includes Kochen–Specker configurations and more. We show
that contextuality, and non-locality as a special case, correspond exactly
to obstructions to the existence of global sections. We describe a linear
algebraic approach to computing these obstructions, which allows a systematic
treatment of arguments for non-locality and contextuality. We distinguish
a proper hierarchy of strengths of no-go theorems, and show that three
leading examples—due to Bell, Hardy and Greenberger, Horne and Zeilinger,
respectively—occupy successively higher levels of this hierarchy. A general
correspondence is shown between the existence of local hidden-variable
realizations using negative probabilities, and no-signalling; this is based on a
result showing that the linear subspaces generated by the non-contextual and
no-signalling models, over an arbitrary measurement cover, coincide. Maximal
non-locality is generalized to maximal contextuality, and characterized in purely
qualitative terms, as the non-existence of global sections in the support. A general
setting is developed for the Kochen–Specker-type results, as generic, model-
independent proofs of maximal contextuality, and a new combinatorial condition
is given, which generalizes the ‘parity proofs’ commonly found in the literature.
We also show how our abstract setting can be represented in quantum mechanics.
This leads to a strengthening of the usual no-signalling theorem, which shows
that quantum mechanics obeys no-signalling for arbitrary families of commuting
observables, not just those represented on different factors of a tensor product.
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1. Introduction

Non-locality and contextuality are fundamental features of physical theories, which contradict
the intuitions underlying classical physics. In particular, they are prominent features of quantum
mechanics, and the goal of the classical no-go theorems of Bell [1], Kochen–Specker [2], etc
is to show that they are necessary features of any theory whose experimental predictions agree
with those of quantum mechanics.
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Bell’s insights into non-locality have been seminal to current developments in quantum
information, where entanglement is viewed as a key informatic resource; there has also been
considerable recent work on experimental tests for contextuality [3, 4].

In this paper, we study these notions from a novel perspective, which yields new insights
and results. Our approach has the following notable features.

• The importance of Bell’s theorem and related results is that they apply not just to quantum
mechanics, but to all theories with certain structural properties. We introduce a general
mathematical setting, completely independent of Hilbert space, which strengthens this
feature and allows results to be proved in considerable generality.

• We study non-locality and contextuality in a unified setting. The idea that non-locality
can be seen as a particular form of contextuality, and specific results obtaining Bell-type
non-locality from Kochen–Specker configurations, can be found in, for example, [5–7].
An important recent contribution in this direction is [8], which studies non-contextual
inequalities as a generalization of Bell inequalities.
Our approach focuses on structural aspects. It offers a general, systematic and
mathematically robust setting in which non-locality and contextuality are treated in a
unified fashion; our definitions and results specialize to yield standard formulations of
either as special cases, but subsume both.

• We use the mathematics of sheaf theory to analyze the structure of non-locality and
contextuality. Sheaf theory is pervasive in modern mathematics, allowing the passage
from local to global [9]. Starting from a simple experimental scenario, and the kind of
probabilistic models familiar from discussions of Bell’s theorem, the Popescu–Rohrlich
(PR) boxes [10], etc, we show that there is a very direct, compelling formalization of these
notions in sheaf-theoretic terms. Moreover, on the basis of this formulation, we show that
the phenomena of non-locality and contextuality can be characterized precisely in terms
of obstructions to the existence of global sections. We give linear algebraic methods for
computing these obstructions.

These ideas lead, in turn, to a number of novel insights into non-locality and contextuality.

• We are able to distinguish three strengths of degree of non-locality: standard probabilistic
non-locality, exhibited by the original example of Bell; possibilistic non-locality,
exemplified by the well-known Hardy model [11]; and strong contextuality. These three
properties form a strict hierarchy; strong contextuality implies possibilistic non-locality,
which implies probabilistic non-locality, but the converse implications fail. In fact, we show
that the Bell model is probabilistically but not possibilistically non-local; the Hardy model
is possibilistically non-local but not strongly contextual; and the Greenberger, Horne and
Zeilinger (GHZ) models [12], for the case when the number of parties is greater than two,
are strongly contextual. Thus we have a hierarchy

Bell< Hardy< GHZ.

Moreover, Lal has shown [13] that the only bipartite no-signalling devices satisfying strong
contextuality are the PR boxes, thus giving a new characterization of these super-quantum
devices.

• We show that strong contextuality is equivalent to a quantitative notion of maximal
contextuality, which has been studied in the special case of Bell-type scenarios as
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maximal non-locality. We use this equivalence to characterize maximal contextuality, and
in particular maximal non-locality, in terms of a Boolean satisfiability problem naturally
associated with a probabilistic model, for the case of dichotomic measurements, and more
generally in terms of a constraint satisfaction problem (CSP).

• We apply our linear algebraic methods of constructing global sections to the issue of giving
local hidden-variable realizations using negative probabilities [14–17]. We show that there
is an equivalence between the existence of such realizations and the no-signalling property.

• We give a general perspective on the Kochen–Specker-type theorems as generic (model-
independent) proofs of strong contextuality. We show the general combinatorial structure
of these results, and make connections to graph theory, leading to the notion of
Kochen–Specker graphs, defined in purely graph-theoretic terms.

• We prove a general result (theorem 8.1) which shows a strict equivalence between
the realization of a system by a factorizable hidden-variable model, and the existence
of a global section which glues together a certain compatible family on a presheaf.
Factorizability is a general property, which subsumes both Bell locality and a form of
non-contextuality at the level of distributions as special cases. This means that the whole
issue of non-locality and contextuality can be translated into a canonical mathematical
form, in terms of obstructions to the existence of certain global sections. This opens up the
possibility of applying the powerful methods of sheaf theory to the study of the structure
of these notions.

• We show in detail how the abstract setting we use can be represented in quantum
mechanics; hence our results apply to all the standard situations. One interesting point
that emerges from this is that the property of compatibility of a family of sections on a
presheaf corresponds to a form of no-signalling [18]. This form of no-signalling subsumes,
but is more general than, the usual notion; it applies to arbitrary families of commuting
observables, not just to those represented on different factors of a tensor product. We
therefore prove a generalized no-signalling theorem, showing that quantum mechanics
does satisfy this more general property.

The remainder of this paper is organized as follows. The basic setting is motivated
and laid out in section 2. The correspondence between global sections and (deterministic)
local hidden variables is explained in section 3. The linear algebraic method for constructing
global sections (or determining their non-existence) is presented in section 4, together with
the results relating to the Bell and Hardy models. The equivalence between no-signalling
and the existence of local hidden-variable realizations with negative probabilities is proved
in section 5. Strong contextuality, the results relating to the GHZ models and the hierarchy
between Bell, Hardy and GHZ, and the connections with maximal non-locality, are presented
in section 6. The general combinatorial structure of Kochen–Specker-type theorems is studied
in section 7. In section 8, we prove our general result relating factorizable hidden-variable
models to the existence of global sections. Representations in quantum mechanics, and the
generalized form of no-signaling, are treated in section 9. Section 10 contains a postlude,
summarizing what has been done, discussing related work and describing some further
directions.

The mathematical background needed to read this paper is quite modest. In particular,
only the bare definitions of category and functor are required. A brief appendix reviews these
definitions.
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2. The setting

2.1. A basic scenario

Our starting point is the idealized situation depicted in the following diagram.

a

b
c

d ·
a

b
c

d ·

Alice Bob

. . .

There are several agents or experimenters, who can each select one of several different
measurements to carry out, and observe one of several different outcomes. These agents
may or may not be spatially separated. When a system is prepared in a certain fashion and
measurements are selected, some corresponding outcomes will be observed. These individual
occurrences or ‘runs’ of the system are the basic events. Repeated runs allow relative frequencies
to be tabulated, which can be summarized by a probability distribution on events for each
selection of measurements. We shall call such a family of probability distributions, one for
each choice of measurements, an empirical model.

As an example of such a model, consider the following table.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a b 1/2 0 0 1/2
a′ b 3/8 1/8 1/8 3/8
a b′ 3/8 1/8 1/8 3/8
a′ b′ 1/8 3/8 3/8 1/8

The intended scenario here is that Alice can choose between measurements a and a′, and Bob
can choose b or b′. Thus the measurement contexts are

{a, b}, {a′, b}, {a, b′
}, {a′, b′

},

and these index the rows of the table. Each measurement has possible outcomes 0 or 1. The
matrix cell at row (a′, b) and column (0, 1) corresponds to the event where Alice performs a′

and observes the outcome 0, and Bob performs b and observes the outcome 1. This can be
described by the function

{a′
7→ 0, b 7→ 1}.

The cells of the row indexed by {a′, b} correspond to the set of functions OC , where C is the
measurement context {a′, b}, and O = {0, 1} is the set of outcomes3.

Each row of the table specifies a probability distribution on events for a given choice of
measurements, i.e. on the set OC where the row is indexed by C . For example, the event

{a′
7→ 0, b 7→ 1}

is specified to have the probability 1/8.

3 OC denotes the set of functions from C to O . This and a few other set-theoretic notations are explained in the
appendix.
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The basic ingredients of our formalism will be the measurement contexts, the events and
the distributions on events. A model of a particular measurement scenario will be given by
specifying a set of measurements X , a familyM of measurement contexts, and for each context
C ∈M, a distribution on the events OC .

We shall now proceed to formalize these ideas. Simple as this setting may seem, it does
have significant mathematical structure, which our formalization will enable us to articulate.

2.2. Events

We shall fix a set X of measurements. We shall also fix a set O of possible outcomes for each
measurement4. Throughout this paper, we shall assume that X and O are finite.

For each set of measurements U ⊆ X , a section over U is a function s : U → O . Such a
section describes the event in which the measurements in U were carried out, and the outcome
s(m) was observed for each m ∈ U .

We shall write E : U 7→ OU for the assignment of the set of sections over U to each set of
measurements U . There is also a natural action by restriction. If U ⊆ U ′, there is a map

resU ′

U : E(U ′)→ E(U ) :: s 7→ s|U.

Note that resU
U = idU , and if U ⊆ U ′

⊆ U ′′, then

resU ′

U ◦ resU ′′

U ′ = resU ′′

U .

Altogether, this says that E is a presheaf , i.e. a functor E : P(X)op
−→ Set.

E has an important additional property. Suppose we are given a family of sets {Ui}i∈I with⋃
i∈I Ui = U ; that is, the family {Ui} is a cover of U . Suppose, moreover, that we are given a

family of sections {si ∈ E(Ui)}i∈I , which is compatible in the following sense: for all i, j ∈ I ,

si |Ui ∩ U j = s j |Ui ∩ U j .

Then there is a unique section s ∈ E(U ) such that s|Ui = si for all i ∈ I . This says that we can
glue together local data that are compatible in the sense of agreeing on overlaps; moreover, this
glued section is uniquely determined.

This gluing property is known as the sheaf condition; it says that E is a sheaf, which we
shall refer to as the sheaf of events.

The fact that this sheaf condition holds for E is quite trivial, since we are simply looking
at functions on a discrete space; we can always glue together partial functions which agree on
their overlaps, just by taking the union of their graphs.

2.3. Distributions

To capture the idea that empirically we observe statistical rather than deterministic behavior
in microphysical systems, we shall consider distributions on events. It will be advantageous to
allow some generality in the notion of distribution we shall consider, by taking the algebra of
probabilistic ‘weights’ as a parameter.

A commutative semiring is a structure (R,+, 0, ·, 1), where (R,+, 0) and (R, ·, 1) are
commutative monoids, and moreover multiplication distributes over addition:

x · (y + z)= x · y + x · z.

4 We could allow a different set of outcomes for each individual measurement, but we will not need this extra
generality.

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


7

There are three main examples of semirings which will be of interest: the reals

(R,+, 0,×, 1),

the non-negative reals

(R>0,+, 0,×, 1)

and the Booleans

B= ({0, 1},∨, 0,∧, 1).

We fix a semiring R. Given a set X , the support of a function φ : X → R is the set of x ∈ X
such that φ(x) 6= 0. We write supp(φ) for the support of φ. An R-distribution on X is a function
d : X → R which has finite support, and is such that∑

x∈X

d(x)= 1.

Note that the finite support condition ensures that this sum is well defined. We write DR(X) for
the set of R-distributions on X .

In the case of the semiring R>0, this is the set of probability distributions with finite
support on X . In the case of the Booleans B, it is the set of non-empty finite subsets of X ;
thus possibilistic or relational models [19, 20] are also covered. In the case of the reals R, it is
the set of signed measures with finite support, allowing for ‘negative probabilities’ [14–17].

Given a function f : X → Y , we define

DR( f ) :DR(X)→DR(Y ) :: d 7→

y 7→

∑
f (x)=y

d(x)

 .
This is easily seen to be functorial:

DR(g ◦ f )=DR(g) ◦DR( f ), DR(idX)= idDR(X),

so we have a functor DR : Set −→ Set.5

We can compose this functor with the event sheaf E : P(X)op
−→ Set, to form a presheaf

DRE : P(X)op
−→ Set, which assigns to each set of measurements U the set DR(E(U )) of

distributions on U -sections. It is worth writing out the functorial action of this presheaf
explicitly. Given U ⊆ U ′ we have a map

DRE(U
′)→DRE(U ) :: d 7→ d|U,

where for each s ∈ E(U ):

d|U (s) :=
∑

s′∈E(U ′),s′|U=s

d(s ′).

Thus d|U is the marginal of the distribution d, which assigns to each section s in the smaller
context U the sum of the weights of all sections s ′ in the larger context which restrict to s.

2.4. Measurement covers

A crucial point is that it may not be possible, in general, to carry out all measurements
together. This is implicit in the idea that each agent makes a choice of measurement from

5 This functor forms part of the well-known distribution monad; see, e.g., [21] for references.
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several alternatives; only the measurements that are chosen are actually carried out. In the
situation where the agents are spatially separated, and the measurements that each carries out
are localized to their own site, the measurements at the different parts can be carried out jointly.
In general, we must allow for more complex situations, where compatible sets of measurements
may overlap in complicated ways.

We shall now introduce the notion of measurement cover, which formalizes the idea that
only certain measurements can be carried out jointly.

A measurement cover M on the set X of measurements is a family of subsets of X such
that

•
⋃
M= X ;

• M is an anti-chain, i.e. C,C ′
∈M and C ⊆ C ′ implies C = C ′.

We think of X as a set of labels for the basic measurements in an experiment. A set C ∈M

is a measurement context, a set of measurements that can be carried out jointly. We shall focus on
the maximal compatible sets of measurements, hence the anti-chain condition. Any compatible
family of measurements in X will be included in some element of M.

It should be noted that measurement covers provide a very general way of
representing compatibility relationships. Of course, a physical interpretation in particular
circumstances will give rise to specific structures of this kind. We shall discuss quantum
representations of the formalism in detail in section 9. We also discuss the conceptual
consequences of our (and related) results concerning compatibility in the postlude in
section 10.

2.4.1. Bell-type scenarios. We shall now describe a particular class of measurement covers
that arises in the formulation of Bell-type theorems on non-locality and in the study of PR
boxes and other non-local devices.

Consider a disjoint family {X i}i∈I . We think of I as labeling the parts of a system, which
may be space-like separated; X i is the set of basic measurements which can be carried out at
part i . We form the disjoint union X of this family. We define M to be those subsets of X
containing exactly one measurement from each part. Thus we regard measurements carried out
in different parts of the system as compatible, but do not allow for compatible measurements in
the same part.

2.4.2. Kochen–Specker-type scenarios. Measurement covers are general enough to cover the
situations arising in Kochen–Specker style proofs of contextuality, as well as the Bell-type
scenarios for non-locality.

Consider the set X = {m1, . . . ,m18}, and the measurement cover M whose elements are
the columns of the following table:

m1 m1 m8 m8 m2 m9 m16 m16 m17

m2 m5 m9 m11 m5 m11 m17 m18 m18

m3 m6 m3 m7 m13 m14 m4 m6 m13

m4 m7 m10 m12 m14 m15 m10 m12 m15
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The importance of this example is that it can be realized by unit vectors in R4, such that each
measurement context C in M is an orthogonal set of vectors. This structure is used in the
18-vector proof of the Kochen–Specker theorem in [22].

We shall discuss proofs of the Kochen–Specker theorem in detail later in this paper: from
the point of view of the abstract, ‘logical’ structure in section 7 and as regards the interpretation
in quantum mechanics in section 9.2.

2.5. Empirical models

We shall now show how the intuitive scenario described at the beginning of this section can be
captured formally, using the mathematical structure we have developed.

Suppose we are given a measurement cover M. Recall that M covers X , i.e.
⋃
M= X .

We shall define a no-signaling empirical model for M to be a compatible family for the
cover M with respect to the presheaf DRE. This means that for each measurement context
C ∈M, there is a distribution eC ∈DRE(C). Moreover, this family of distributions is compatible
in the sense of the sheaf condition: for all C,C ′

∈M,

eC |C ∩ C ′
= eC ′|C ∩ C ′.

In the case of Bell-type scenarios, this is readily seen to coincide with the usual notion of no-
signaling. For example, in the bipartite case, consider contexts C = {ma,mb}, C ′

= {ma,m ′

b},
with a choice of measurement each for Alice and Bob. Fix s0 ∈ E({ma}), which assigns some
outcome to ma. Then the compatibility condition implies that∑

s∈E(C),s|ma=s0

eC(s) =

∑
s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome specified by s0 for her measurement
ma is the same, whether we marginalize over the possible outcomes for Bob when he makes the
measurement mb, or the measurement m ′

b. In other words, Bob’s choice of measurement cannot
influence Alice’s outcome. This is exactly the standard definition of no-signaling.

We should also note, as a boundary case, that E(∅) is a one-element set, and DRE(∅) is
again a one-element set. Thus if contexts have empty intersection, the compatibility condition
is trivially satisfied.

The general notion of a compatible family for arbitrary covers M applies to a much wider
range of situations than Bell-type scenarios; later we will show that the empirical models
which can be represented as quantum mechanical systems satisfy this more general form of
no-signaling.

As we shall only consider no-signaling models in this paper, henceforth we shall simply
speak of empirical models.

2.6. Examples

We shall now show how some standard examples appear in our formalism.
Consider a bipartite Bell-type scenario, where Alice has two possible measurements {a, a′

},
and Bob has {b, b′

}. There are two possible outcomes, 0 or 1, for each measurement.
Thus there are four maximal measurement contexts:

{a, b}, {a′, b}, {a, b′
}, {a′, b′

},
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which index the rows of the following table:

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) p1 p2 p3 p4

(a′, b) p5 p6 p7 p8

(a, b′) p9 p10 p11 p12

(a′, b′) p13 p14 p15 p16

The rows of this table correspond to the sets of sections E(C), where C ranges over the
maximal measurement contexts. Thus, for example, the cell labeled with p2 corresponds to the
section {a 7→ 1, b 7→ 0} in E(C), where C = {a, b}.

The table specifies a weight pi for each of these sections; in the standard case of
probabilistic models, these will be non-negative reals, such that the values along each row sum
to 1, and hence form a probability distribution. The distributions eC for each maximal context
C collectively specify what we are calling an empirical model; and the no-signalling condition
corresponds exactly to the compatibility condition on this family of distributions.

As a specific example, consider the following table:

A B (0, 0) (1, 0) (0, 1) (1, 1)
a b 1/2 0 0 1/2
a′ b 3/8 1/8 1/8 3/8
a b′ 3/8 1/8 1/8 3/8
a′ b′ 1/8 3/8 3/8 1/8

We shall use this model later to give a proof of Bell’s theorem [1].
As another example, consider:

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1/2 0 0 1/2
(a′, b) 1/2 0 0 1/2
(a, b′) 1/2 0 0 1/2
(a′, b′) 0 1/2 1/2 0

This is a PR box [10].
We can also consider models over other semirings of weights. For example, the following

is a specification of the possibilistic version of a non-local Hardy model [11], with weights in
the Boolean semiring. It can be viewed as specifying the support of a standard probabilistic
Hardy model.

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1 1 1 1
(a′, b) 0 1 1 1
(a, b′) 0 1 1 1
(a′, b′) 1 1 1 0

3. Global sections

We shall now show how the structures we have exposed in our mathematical description of
empirical models can be brought to bear on the analysis of non-locality and contextuality.
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We have already observed that the presheaf of events E is in fact a sheaf; it is natural to
ask if the same holds for the presheaf DRE. Indeed, since empirical models are compatible
families for this presheaf, to say that the sheaf condition holds for such a family {eC}C∈M, with
respect to a measurement cover M, is to say that there exists a global section d ∈DRE(X),
defined on the entire set of measurements X . Such a global section defines a distribution on
the set E(X)= O X , which specifies assignment of outcomes to all measurements. Moreover,
this distribution must restrict to yield the probabilities specified by the empirical model on all
the measurement contexts in M: i.e. for all C ∈M, d|C = eC . Thus the existence of a global
section for the empirical model corresponds exactly to the existence of a distribution defined
on all measurements, which marginalizes to yield the empirically observed probabilities. This
places the idea of extendability of probability distributions, as studied in pioneering work by
Fine [23], in a canonical and general mathematical form.

We can say more than this. A global assignment s ∈ E(X)= O X , i.e. a global section of
the sheaf E, can be seen as a canonical form of deterministic hidden variable, which assigns
a definite outcome to each measurement, independent of the measurement context in which
it appears. This yields an assignment s|C for each measurement context C . A global section
d ∈DRE(X) specifies a distribution on this canonical set of deterministic hidden variables.
Each s ∈ O X induces a distribution δs ∈DRE(X), where δs(s)= 1, and δs(s ′)= 0 if s 6= s ′. The
distribution induced by s on each measurement context C is δs|C ; note that δs|C = δs|C . Now
we have

eC(s) = d|C(s) =

∑
s′∈E(X),s′|C=s

d(s ′) =

∑
s′∈E(X)

δs′|C(s) · d(s ′) =

∑
s′∈E(X)

δs′|C(s) · d(s ′).

Thus the condition that d|C = eC for each measurement context C says exactly that we
reproduce the empirically observed probabilities eC(s) by averaging over the hidden variables
with respect to the distribution d .

It is also easily verified that for each context C , and s ′
∈ E(C):

δs|C(s
′) =

∏
x∈C

δs|{x}(s
′
|{x}).

That is, the probability distribution determined by s factorizes as a product of the probabilities
assigned to the individual measurements, independent of the context in which they appear. We
shall define a general version of this factorizability property later, in section 8.

If we specialize to the case of Bell-type scenarios, we see that factorizability corresponds
to Bell locality [1]. For example, in a context {a, b}, where a is a measurement for Alice and b
a measurement for Bob, then for a joint assignment of outcomes {a 7→ o1, b 7→ o2}, it says that
the probability of this joint outcome determined by the hidden variable s is the product of the
probabilities it determines for {a 7→ o1} and {b 7→ o2}. In other situations, it corresponds to a
form of non-contextuality at the level of distributions.

We can summarize this discussion as follows.

Proposition 3.1. The existence of a global section for an empirical model implies the existence
of a local (or non-contextual) deterministic hidden-variable model which realizes it6.

6 Note that ‘deterministic hidden variable model’ means that the model is deterministic for each fixed value of the
hidden variable.

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


12

We note also that, as we shall show later (see theorem 8.1), apparently more general
forms of realization of empirical models by factorizable hidden-variable models, in which
the hidden variables are not required to be deterministic, are in fact equivalent to canonical
realizations by global sections. Thus the entire issue of non-locality and contextuality—i.e. the
existence of empirical models that have no such realizations—is equivalently formulated as the
non-existence of global sections for the corresponding compatible families.

Thus, we have a characterization of the phenomena of locality and non-contextuality
in terms of obstructions to the existence of global sections, a central issue in the pervasive
applications of sheaves in geometry, topology, analysis and number theory. This opens the door
to the use of the powerful methods of sheaf theory in the study of non-locality and contextuality.

4. Existence of global sections

The discussion in the previous section motivates the following problem:

Given an empirical model, determine if it has a global section.

We shall give a general linear-algebraic method for answering this question, which as we have
seen is equivalent to the question of whether there exists a realization of the model by local or
non-contextual hidden variables.

4.1. The incidence matrix

We are given a measurement coverM. The first (and main) step is to construct a matrix M of 0s
and 1s, which we shall call the incidence matrix ofM. This matrix is defined using onlyM and
the event sheaf E, and can be applied to any empirical model expressed as a compatible family
for M, with respect to any distribution functor DR.

To define the incidence matrix, we firstly form the disjoint union
∐

C∈M E(C) of all the
sections over the contexts in M and then specify an enumeration s1, . . . , sp of this set. We also
specify an enumeration t1, . . . , tq of all the global assignments t j ∈ O X , i.e. the global sections
of the sheaf E. We then form the (p × q)-matrix M, with entries defined as follows:

M[i, j] =

{
1, t j |C = si (si ∈ E(C)),

0, otherwise.

Conceptually, this matrix represents the tuple of restriction maps

E(X)−→

∏
C∈M

E(C) :: s 7→ (s|C)C∈M.

To see this, note that for each C we have the embedding

E(C)−→ P(E(C)) :: s 7→ {s}.

Thus we obtain a map E(X)−→
∏

C∈M P(E(C)). Now we use the isomorphism∏
i∈I

P(X i) ∼= P

(∐
i∈I

X i

)
to obtain a map E(X)−→ P(

∐
C∈M E(C)). Such a map is the same thing as a relation

R ⊆ E(X)×
∐

C∈M

E(C).
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(0, 0) (1, 0) (0, 1) (1, 1)

(a,b ) s1 s2 s3 s4

(a′, b) s5 s6 s7 s8

(a, b′) s9 s10 s11 s12

(a′, b′) s13 s14 s15 s16

Figure 1. Enumeration of sections.

The incidence matrix is the Boolean matrix representation of this relation. Viewing it as a
0/1-matrix over the semiring R, it acts by matrix multiplication on distributions in DRE(X),
represented as row vectors:

d 7→ (d|C)C∈M.

Thus the image of this map will be the set of families {eC}C∈M which arise from global sections.

4.2. Example: Bell-type scenarios

We shall illustrate this construction for Bell-type scenarios. Following standard terminology, we
shall refer to a Bell-type scenario with n parts, each of which has k possible measurements, each
with l possible outcomes, as of (n, k, l) type. Note that for a system of (n, k, l) type, there are kn

measurement contexts, for each of which there are ln possible assignments of outcomes. Thus
there are (kl)n sections over the contexts. The set of all measurements is of size kn, and there
are lkn global assignments. Thus the incidence matrix in this case will be of size (kl)n × lkn.
Each row of the matrix will contain l(k−1)n 1s.

We shall describe the (2,2,2) case explicitly. In this case, the matrix is 16 × 16. We shall
use the enumeration of sections over contexts given in the table in figure 1. We shall also use an
evident enumeration of global sections obtained by viewing them as binary strings, where the
i th bit indicates the assignment of an outcome to the i th measurement, listed as a, b, a′, b′.

The incidence matrix is then as follows.

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
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This matrix has rank 9. We shall give a general formula for the rank of the incidence matrix
in proposition 5.6, and apply it to the (n, 2, 2) cases in section 5.3.

We note that in the case of Bell-type scenarios, incidence matrices have been studied as
‘transfer matrices’ in [24]; see also [25].7 Our account generalizes this to arbitrary measurement
covers and also provides a clear conceptual derivation of these matrices in terms of the
restriction maps.

4.3. Global sections as solutions of linear systems

Now we consider an empirical model {eC}, defined with respect to the distribution functor DR.
Such a model assigns a weight in the semiring R to each section si ∈ E(C). Thus it can be
specified by a vector V of length p, where V[i] = eC(si). We can also introduce a vector X of
length q of ‘unknowns’, one for each global section t j ∈ E(X). Now a solution for the linear
system MX = V will be a vector of values in R, one for each t j . To ensure that this vector is a
distribution, we augment M with an extra row, every entry in which is 1, and similarly augment
V with an extra element, also set to 1. A solution for this augmented system will enforce the
constraint

X[1] + · · · + X[q] = 1

and hence ensure that the assignment of weights defines a distribution on E(X). The remaining
equations ensure that this distribution restricts to yield the weight specified by the empirical
model for each section s j .

Proposition 4.1. Let M′ be the augmented incidence matrix, and V′ the augmented vector
corresponding to an empirical model e over the distribution functorDR. Solutions to this system
of equations M′X = V′ in R correspond bijectively to global sections for e.

We also note that in the case of Bell-type scenarios of (n, k, l) type, it is not necessary
to use the augmented system; the solutions of the equation MX = V will automatically be
distributions. This follows easily from the regular structure of the incidence matrices for these
cases.

4.4. Examples

We shall consider a number of examples, based on the models of (2, 2, 2) type discussed in
section 2.6.

4.4.1. The Bell model. We look again at the Bell model

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1/2 0 0 1/2
(a′, b) 3/8 1/8 1/8 3/8
(a, b′) 3/8 1/8 1/8 3/8
(a′, b′) 1/8 3/8 3/8 1/8

We are interested in finding a solution in the non-negative reals, i.e. a probability
distribution on the global assignments E(X). This amounts to solving the linear system over

7 We thank one of the journal referees for bringing this connection to our attention.
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the reals, subject to the constraint X> 0, i.e. to a linear programming problem. It is easy in this
case to give a direct argument that there is no such solution, and hence that the above model has
no hidden-variable realization, thus proving Bell’s theorem [1].

Proposition 4.2. The Bell model has no global section

Proof. We focus on four of the 16 equations, corresponding to rows 1, 6, 11 and 13 of the
incidence matrix. We write X i rather than X[i].

X1 + X2 + X3 + X4 = 1/2

X2 + X4 + X6 + X8 = 1/8

X3 + X4 + X11 + X12 = 1/8

X1 + X5 + X9 + X13 = 1/8

Adding the last three equations yields

X1 + X2 + X3 + 2X4 + X5 + X6 + X8 + X9 + X11 + X12 + X13 = 3/8.

Since all these terms must be non-negative, the left-hand side of this equation must be greater
than or equal to the left-hand side of the first equation, yielding the required contradiction. ut

4.4.2. The Hardy model. Now we consider the possibilistic version of the Hardy model,
specified by the following table.

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1 1 1 1
(a′, b) 0 1 1 1
(a, b′) 0 1 1 1
(a′, b′) 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive entries by
1; thus it can be interpreted as the support of the probabilistic model.

In this case, we are interested in the existence of a solution over the Boolean semiring. This
corresponds to a Boolean satisfiability problem. For example, the equation specified by the first
row of the incidence matrix corresponds to the clause

X1 ∨ X2 ∨ X3 ∨ X4,

while the fifth yields the formula

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7.

A solution is an assignment of Boolean values to the variables which simultaneously satisfies
all these formulae. Again, it is easy to see by a direct argument that no such assignment exists.

Proposition 4.3. The possibilistic Hardy model has no global section over the Booleans.

Proof. We focus on the four formulae corresponding to rows 1, 5, 9 and 16 of the incidence
matrix:

X1 ∨ X2 ∨ X3 ∨ X4

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7

¬X1 ∧ ¬X2 ∧ ¬X9 ∧ ¬X10

¬X4 ∧ ¬X8 ∧ ¬X12 ∧ ¬X16
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Since every disjunct in the first formula appears as a negated conjunct in one of the other three
formulae, there is no satisfying assignment. ut

To understand the significance of this result, we note the following general fact.

Proposition 4.4. Let M be the incidence matrix for a cover M, and let V be the vector of non-
negative reals corresponding to a probabilistic model over M. Let Vb be the Boolean vector
obtained by replacing each nonzero element of V by 1. If the system MX = V has a solution
over the non-negative reals, then the system MX = Vb has a solution over the Booleans.

Proof. This follows simply from the fact that the map from the non-negative reals to the
Booleans which takes all nonzero elements to 1 is a semiring homomorphism. ut

It follows that, if the support of a probabilistic model has no global section with respect
to the Boolean distribution functor DB, then the probabilistic model itself has no global section
with respect to the probability distribution functorDR>0 . Thus the argument given above implies
that the probabilistic Hardy model also has no global section, and hence is non-local.

The converse of proposition 4.4 is false. Indeed, the Bell model, which as we have seen
has no probabilistic global section, does have a Boolean global section for its support. This is
easy to show directly, but also follows from the general results in [26], which show that Hardy
models are complete for the (2,2,2)-type cases, and in particular that there must be at least three
sections excluded from the support in order for non-locality to hold, while the Bell model has
only two zero entries.

In this sense, we can say that the Hardy model satisfies a stronger non-locality property than
the Bell model. In general, we say that a probabilistic model is probabilistically non-extendable
if it has no global section over DR>0 , and possibilistically non-extendable if its support has no
global section overDB. We have seen that possibilistic non-extendability is strictly stronger than
probabilistic non-extendability.

5. Negative probabilities

We shall now consider the question of extendability over real-valued distributions DR, i.e.
signed probability measures. Formally, this simply amounts to solving the linear system over
the reals, with no additional constraints. Conceptually, this allows the introduction of negative
probabilities in the extended model. Of course, these marginalize to yield standard non-negative
probabilities in the measurement contexts stipulated by the empirical model. Thus the usual
relative-frequency interpretation of the actually observed statistics is maintained.

The appearance of negative probabilities in quantum mechanics has a long history,
which we shall sketch in the postlude (section 10). In this section, we shall prove that all
empirical models are extendable with respect to signed probability measures. In fact, there
is an equivalence between extendability under signed measures and no-signalling. Note that
the class of no-signalling models is strictly larger than the empirical models of this type that
arise in quantum mechanics. For example, it includes the superquantum Popescu–Rohrlich
boxes [10].

The result therefore shows that negative probabilities, in themselves, cannot characterize
quantum mechanics. This runs contrary to an impression that might be gained from the
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literature. For example, Feynman writes: ‘The only difference between a probabilistic classical
world and the equations of the quantum world is that somehow or other it appears as if the
probabilities would have to go negative . . . ’ [27, p 480]. In fact, the introduction of negative
probabilities yields the entire no-signaling world.

5.1. Solving the linear system over the reals

Given an empirical model e over DR, our aim is to find a global section. The existence of such
a global section for e, which is represented by the real vector V, reduces to the existence of a
solution for the linear system MX = V over the reals, with no additional constraints.

Note that there is no semiring homomorphism from the reals to the Booleans. Indeed, if
there were such a homomorphism h, we would have

0 = h(0)= h(1 + (−1))= h(1)∨ h(−1)= 1 ∨ h(−1)= 1.

A similar argument shows that there is no homomorphism from the reals to the non-negative
reals. Thus there is no result analogous to proposition 4.4, and it is possible for the linear system
to be solvable over the reals, while no solution exists over the non-negative reals or the Booleans.

We shall now show that such solutions exist for all no-signaling probabilistic empirical
models, over arbitrary measurement covers. This substantially generalizes previous results, e.g.
theorem 1 in [25].

We introduce some notation. We fix a standard set of outcomes O := {1, . . . , l}. Given a
cover M, we define the set of partial contexts:

U := {U ⊆ X | ∃C ∈M.U ⊆ C}.

For each U ∈ U and p > 0, we define

E
(p)(U ) := {s ∈ E(U ) | |s−1({1})|6 p},

the set of sections that map at most p measurements to the outcome 1.
Given a section s, we write sm:= j for the section defined by

sm:= j(m)= j, sm:= j(m
′)= s(m ′), (m ′

6= m).

Finally, given an empirical model e, we define

e(p) := {eU (s) | U ∈ U, s ∈ E
(p)(U )}.

Proposition 5.1. Let e be a probabilistic model over M. Then e is linearly determined by e(0).

Proof. We shall prove that we can infer e(p+1) from e(p); the fact that e is determined by e(0) then
follows by induction.

Consider U ∈ U, s ∈ E
(p), and m ∈ U . Let U ′ := U\{m}. Using compatibility,

eU ′(s|U ′) =

∑
j

eU (sm:= j).

Hence
eU (sm:=1) = eU ′(s|U ′) −

∑
j 6=1

eU (sm:= j). (1)
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All the terms on the rhs of this equation are in e(p), while every element of e(p+1) can be written
in the form of the lhs.

Unwinding the induction, every number eC(s) is given by a linear combination of values
in e(0), obtained by back-substitution in (1). ut

We can consider probabilistic models as real vectors, as in the previous section. For a given
cover M, the dimension of the ambient vector space will be t :=

∑
C∈M l |C |.

Proposition 5.2. The dimension of the subspace of Rt spanned by the vectors arising from
probabilistic empirical models is bounded above by D :=

∑
U∈U(l − 1)|U |.

Proof. From proposition 5.1, we know that any probabilistic empirical model is determined by a
vector of D numbers. Moreover, the corresponding map L : RD

→ Rt defined by equations (1)
is linear. Hence, the subspace spanned by the probabilistic empirical models is contained in the
image of L , and has dimension 6 D. ut

This gives us an upper bound on the dimension of the linear subspace generated by the
‘no-signalling polytope’ over the measurement cover M. We shall now give a lower bound on
the dimension of the linear space spanned by the non-contextual models over M—i.e. those
arising from global sections.

Given a cover M, we have the set U of partial contexts. Given U ∈ U and s ∈ E
(0)(U ), we

can define the global assignment vU,s : X → O:

vU,s(m)= s(m), (m ∈ U ), vU,s(m)= 1, (m 6∈ U ).

Note that vU,s = vU ′,s′ implies that U = U ′ and s = s ′. Each such assignment vU,s defines a
column vector vU,s = M[ , vU,s]. There are clearly D =

∑
U∈U(l − 1)|U | such assignments.

Proposition 5.3. The set of vectors {vU,s}U∈U,s∈E(0)(U ) is linearly independent. Thus the
dimension of the linear subspace of Rt spanned by the vectors arising from global sections
is bounded below by D.

Proof. Suppose that
∑

U,s µU,svU,s = 0. We shall show that µU,s = 0 for all U, s, by complete
induction on |X\U |.

Given some U ′, s ′, we choose a row of the incidence matrix (C, s0) such that U ′
⊆ C and

vU ′,s′|C = s0, so that s0|U ′
= s ′. Note that, for any U ′′, s ′′, M[(C, s0), vU ′′,s′′] = 1 if and only if

vU ′′,s′′|C = s0, if and only if U ′′
∩ C = U ′, and s ′′

|U ′
= s ′. If vU ′′,s′′ 6= vU ′,s′ , we must then have

U ′′
⊃ U ′; so by induction hypothesis, µU ′′,s′′ = 0. Using the (C, s0) component of the vector

equation
∑

U,s µU,svU,s = 0, we conclude that µU ′,s′ = 0. ut

We now come to our main result.

Theorem 5.4. Let M be any measurement cover. The linear subspaces generated by the
non-contextual and the no-signalling models over this cover coincide, with dimension D.

Proof. Since the non-contextual models are a subset of the no-signaling models, this follows
immediately from the matching lower bound on the dimension of the local subspace from
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proposition 5.3, and the upper bound on the dimension of the no-signalling space from
proposition 5.2. ut

As an immediate consequence of this result, we have the following.

Theorem 5.5. Let M be any measurement cover, and e a probabilistic model over this cover,
with the corresponding vector V ∈ Rt . Then the linear system MX = V has a solution over the
reals.

We can also apply this result to the incidence matrix. Let M be the incidence matrix defined
over a cover M and set of outcomes O .

Proposition 5.6. The rank of M, as a matrix over the reals, is D.

Proof. The incidence matrix defines a linear map from the vector space generated by the global
assignments O X into Rt . By theorem 5.4, the dimension of the image of this map is D. ut

5.2. Example: the Popescu–Rohrlich box

We consider the PR box:

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1/2 0 0 1/2
(a′, b) 1/2 0 0 1/2
(a, b′) 1/2 0 0 1/2
(a′, b′) 0 1/2 1/2 0

A simple solution of the linear system for the PR box is the vector

[1/2, 0, 0, 0,−1/2, 0, 1/2, 0,−1/2, 1/2, 0, 0, 1/2, 0, 0, 0].

This vector can be taken as giving a local hidden-variable realization of the PR box using
negative probabilities. Similar realizations can be given for the other PR boxes.

5.3. An explicit formula for the dimension

We now consider some symmetry properties of a cover M, and the associated family of partial
contexts U. We define U ( j) to be the set of elements of U of cardinality j , 06 j 6 n. We say that
M is homogeneous if the following conditions hold.

(i) All the contexts C ∈M have the same number n of elements.
(ii) Every set U ∈ U

( j) is a subset of the same number N j of contexts C ∈M. Note that we
must always have N0 = p, where p = |M|.

We consider some examples.

• Every (n, k, l)-type Bell scenario is homogeneous, with p = kn and N j = kn− j .
• The measurement cover described in section 2.4.2, corresponding to the Kochen–Specker

proof from [22], is homogeneous, with p = 9, n = 4, N1 = 2 and N j = 1 for all 26 j 6 4.
• Many of the constructions used in the Kochen–Specker proofs are homogeneous, for

example the cover corresponding to the Peres–Mermin magic square [7, 28], which consists
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of the rows and columns of the table

A B C
D E F
G H I

In this case, p = 6, n = 3, N1 = 2 and N2 = N3 = 1.

Proposition 5.7. Let M be a homogeneous cover. Then,

D =

n∑
j=0

(n
j

)
p(l − 1) j

N j
.

Proof. From the definitions,

D =

∑
U∈U

(l − 1)|U |
=

n∑
j=0

|U
( j)

|(l − 1) j .

Homogeneity implies that |U
( j)

| = p
(n

j

)
/N j . ut

We now apply this result to our examples.

• For (n, k, l)-type scenarios, we have

D =

n∑
j=0

(n
j

)
kn(l − 1) j

kn− j
=

n∑
j=0

(
n

j

)
k j(l − 1) j .

Applying the binomial theorem, we obtain D = (k · (l − 1)+ 1)n. This retrieves the
dimension established in [25], with the minor difference that the value given there is
D − 1. This apparent discrepancy arises because marginalization over the empty set is
excluded in [25], using the fact that, by normalization, e∅(∅)= 1. However, in this case
equations (1) are affine rather than linear.

• For the 18-vector cover, taking l = 2, we obtain D = 118. This can be compared with the
dimension of the ambient vector space, which is 9 × 24

= 144.

• The corresponding value for the Peres–Mermin square is D = 34, with ambient
dimension 48.

We can also apply this formula to the rank of the incidence matrix. For example, for
(n, 2, 2)-scenarios, where the incidence matrix is of size 4n

× 4n, the rank is 3n.
This formula for the rank can be made visually apparent in this case, by noting that, with

a suitable choice of enumeration for the rows and columns, the incidence matrices M(n) have a
self-similar inductive structure:

M(1) :


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 M(n + 1) :


M(n) M(n) 0 0

0 0 M(n) M(n)
M(n) 0 M(n) 0

0 M(n) 0 M(n)


New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


21

5.4. Global sections and no-signaling

No-signalling has been built into our notion of empirical model through the requirement of
compatibility of the family {eC}. Note, however, that any family, whether compatible or not,
gives rise to a linear system of equations MX = V. If this system has a solution, so that the
family has a global section, it is automatically compatible and hence satisfies no-signaling.

Proposition 5.8. Let d ∈DRE(X) be a global section. Then the family {d|C}C∈M is compatible.

Proof. This follows immediately from the functoriality of restriction. For any C,C ′
∈M:

DR(resC
C∩C ′) ◦DR(resX

C )(d) = DR(resC
C∩C ′ ◦ resX

C )(d) = DR(resX
C∩C ′)(d)

and thus (d|C)|C ∩ C ′
= d|C ∩ C ′. Similarly, (d|C ′)|C ∩ C ′

= d|C ∩ C ′. Hence d|C and d|C ′

agree on their overlap. ut

Combining this result with theorem 5.5, we obtain the following theorem.

Theorem 5.9. Probability models have local hidden-variable realizations with negative
probabilities if and only if they satisfy no-signalling.

Thus we have a striking equivalence between no-signalling models and those admitting
local hidden-variable realizations with negative probabilities.

6. Strong contextuality

Consider a probability model over a cover M. By proposition 4.4, if the model is extendable
over DR>0 , its support is extendable over the Booleans. This means that there is a Boolean
distribution d on E(X) which restricts to supp(eC) for every context C ∈M. Such a distribution
is simply a non-empty subset S of E(X). The condition d|C = supp(eC) means that, for all
s ∈ S, s|C ∈ supp(eC) for every C ∈M; moreover, every section in supp(eC) is of the form s|C
for some s in S.

Given an empirical model e, we define the set

Se := {s ∈ E(X) : ∀C ∈M. s|C ∈ supp(eC)}.

Thus a consequence of the extendability of e is that Se is non-empty.
We say that the model e is strongly contextual if this set Se is empty. Whereas a

global section for an empirical model e completely determines its behavior, asking for some
assignment s ∈ E(X) which is consistent with the support of e is much weaker. The negative
property that not even one such assignment exists is correspondingly much stronger. Indeed, the
Hardy model, which as we saw in the previous section is possibilistically non-extendable, is not
strongly contextual. The global assignment

{a 7→ 1, a′
7→ 0, b 7→ 1, b′

7→ 0}

is in Se for this model. The Bell model similarly fails to be strongly contextual.
The question now arises: are there models coming from quantum mechanics which are

strongly contextual in this sense?
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We shall now show that the well-known GHZ models [12], of type (n, 2, 2) for all n > 2,
are strongly contextual. This will establish a strict hierarchy

Bell< Hardy< GHZ

of increasing strength of obstructions to non-contextual behavior for these salient models.
The GHZ model of type (n, 2, 2) can be specified as follows. We label the two

measurements at each part as X (i) and Y (i), and the outcomes as 0 and 1. For each context
C , every s in the support of the model satisfies the following conditions.

• If the number of Y measurements in C is a multiple of 4, the number of 1s in the outcomes
specified by s is even.

• If the number of Y measurements is 4k + 2, the number of 1s in the outcomes is odd.

We will see later how a model with these properties can be realized in quantum mechanics.

Proposition 6.1. The GHZ models are strongly contextual, for all n > 3.

Proof. We consider the case when n = 4k, k > 1. Assume for a contradiction that we have a
global section s ∈ Se for the GHZ model e.

If we take Y measurements at every part, the number of outcomes that are under the
assignment is even. Replacing any two Ys by Xs changes the residue class mod 4 of the
number of Y s, and hence must result in the opposite parity for the number of 1 outcomes
under the assignment. Thus for any Y (i), Y ( j) assigned the same value, if we substitute Xs in
those positions they must receive different values under s. Similarly, for any Y (i), Y ( j) assigned
different values, the corresponding X (i), X ( j) must receive the same value.

Suppose first that not all Y (i) are assigned the same value by s. Then, for some i , j , k, Y (i)

is assigned the same value as Y ( j), and Y ( j) is assigned a different value than Y (k). Thus Y (i)

is also assigned a different value than Y (k). Then, X (i) is assigned the same value as X (k), and
X ( j) is assigned the same value as X (k). By transitivity, X (i) is assigned the same value as X ( j),
yielding a contradiction.

The remaining cases are where all Ys receive the same value. Then any pair of Xs must
receive different values. But taking any three Xs, this yields a contradiction, since there are
only two values, so some pair must receive the same value.

The case when n = 4k + 2, k > 1, is proved in the same fashion, interchanging the parities.
When n > 5 is odd, we start with a context containing one X , and again proceed similarly.

The most familiar case, for n = 3, does not admit this argument, which relies on having at
least four Ys in the initial configuration. However, for this case one can easily adapt the well-
known argument of Mermin using ‘instruction sets’ [29] to prove strong contextuality. This
uses a case analysis to show that there are eight possible global sections satisfying the parity
constraint on the three measurement combinations with two Ys and one X ; and all of these
violate the constraint for the X X X measurement. ut

We shall also mention an elegant result due to Lal [13].

Proposition 6.2 (Lal). The only strongly contextual no-signaling models of type (2, 2, 2) are
the PR boxes.

Thus strong contextuality actually characterizes the PR boxes.
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6.1. Strong contextuality and maximal non-locality

The property of strong contextuality is defined in a simple ‘qualitative’ fashion, in terms of the
support of a model. As we shall now see, for probabilistic models it is equivalent to a notion
which can be defined in quantitative terms and has been studied in this form in the special case
of Bell-type scenarios8.

Suppose that {eC}C∈M is a model over the presheaf DR>0 . We consider convex
decompositions

e = λL + (1 − λ)q, 06 λ6 1, (2)

where L is a local model and q a no-signalling model. This means that, for every C ∈M, and
s ∈ E(C), we have

eC(s)= λLC(s)+ (1 − λ)qC(s).

We define the non-contextual fraction of e to be the supremum over all λ appearing in
such convex decompositions (2). This notion was introduced for Bell-type scenarios in [30];
see also [31, 32], where the terminology local fraction is used. A model with local fraction 0
is defined to be maximally non-local. Geometrically, this corresponds to the model being on a
face of the no-signaling polytope with no local elements.

In the general setting of models defined on arbitrary measurement covers, we say that a
model e is maximally contextual if the non-contextual fraction of e is 0.

Proposition 6.3. A model e is strongly contextual if and only if it it is maximally contextual.

Proof. Suppose firstly that e admits a convex decomposition (2). By the results of section 3 and
also theorem 8.1, we can take L to be a convex sum of deterministic models

∑
i µiδsi , where

each si ∈ E(X) is a global assignment. If λ > 0, then from (2), si ∈ Se for each i . Thus strong
contextuality implies maximal contextuality.

For the converse, suppose that s ∈ Se. Taking L = λ · δs , we shall define q such that (2)
holds. For each C ∈M and s ′

∈ E(C):

qC(s
′) :=

eC(s ′)− λ · δs|C(s ′)

1 − λ
.

It is easily verified that, for each C ,
∑

s′∈E(C) qC(s ′)= 1. To ensure that q is always non-negative,
we must have λ6 infC∈M eC(s|C). Since this is the infimum of a finite set of positive numbers,
we can find λ > 0 satisfying this condition.

It remains to verify that q is no-signalling, i.e. that {qC} forms a compatible family. Given
C,C ′

∈M, fix s0 ∈ E(C ∩ C ′). Now

qC |C ∩ C ′(s0)= 1/(1 − λ)

 ∑
s′∈E(C),s′|C∩C ′=s0

eC(s
′)

 − λ · δs|C∩C ′(s0)

 .
A similar analysis applies to qC ′|C ∩ C ′(s0). Using the compatibility of e, we conclude that
qC |C ∩ C ′

= qC ′|C ∩ C ′. ut

We can use this equivalence to give a characterization of maximal contextuality, and in
particular of maximal non-locality, in terms of a CSP. In the case of dichotomic measurements,
this reduces to a Boolean satisfiability problem.

8 We thank one of the journal referees for pointing out this connection.
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We recall that a CSP [33, 34] is specified by a triple (V, K ,R), where V is a finite set of
variables, K is a finite set of values and R is a finite set of constraints. A constraint is a pair
(C, S), where C ⊆ V and S ⊆ K C . (It is more common to define a constraint as an ordered list
of k variables, and a set of k-tuples of values, but this is obviously equivalent to the version
given.) An assignment s : V → K satisfies a constraint (C, S) if s|C ∈ S. A solution of the CSP
(V, K ,R) is an assignment s : V → K which satisfies every constraint in R.

Let e be a model over a cover M, with outcome set O . For each C ∈M, we have the set
Se(C) := supp(eC)⊆ OC . We can associate the CSP (X, O, {Se(C) | C ∈M}) with e.

Proposition 6.4. A probabilistic model e is maximally contextual if and only if the
corresponding CSP has no solution. In particular, for Bell-type scenarios, e is maximally non-
local if and only if the corresponding CSP has no solution.

Proof. This follows directly from proposition 6.3, since global sections in the support of e are
clearly in bijective correspondence to solutions of the associated CSP. ut

In the case of dichotomic measurements, the CSP reduces to a Boolean satisfiability
problem. In this case, we interpret the two possible outcomes as truth values, and X as a set
of propositional variables.

Given a model e, we define the formula

φe :=
∧

C∈M

∨
s∈Se(C)

ψs

where for a section s ∈ OC we define the corresponding formula

ψs :=
∧

m∈C,s(m)=true

m ∧

∧
m∈C,s(m)=false

¬m.

Proposition 6.5. A probabilistic model e with dichotomic measurements is maximally
contextual if and only if the corresponding formula φe is unsatisfiable. In particular, for Bell-
type scenarios, e is maximally non-local if and only it φe is unsatisfiable.

7. Generic strong contextuality and Kochen–Specker theorems

Let e and e′ be models, such that the support of e is included in the support of e′. Then Se is
included in Se′; hence if e′ is strongly contextual, so is e. Thus by showing strong contextuality
for a single model, we can show it for a whole class of models.

We shall fix our set of outcomes as {0, 1}. This means that we can define subsets of E(C) by
formulae φC , with the elements of C used as propositional variables. A section s : C → {0, 1}

can be viewed as a Boolean assignment for these variables, and φC defines the set of its satisfying
assignments.

We are interested, in particular, in the formula

ONE(C) :=
∨
m∈C

(m ∧

∧
m′∈C\{m}

¬m ′).

This is satisfied by those assignments with exactly one outcome set to 1.
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A Kochen–Specker-type result [2] can be factored into two parts.

(i) Defining coversM such that there is no global section s ∈ E(X)which satisfies the formula

φM :=
∧

C∈M

ONE(C).

(ii) Providing quantum representations for these covers, which interpret the measurements by
quantum observables in such a way that every quantum model for this set of observables
has its support included in ONE(C) for each C ∈M, and hence is strongly contextual.

We shall explain the quantum aspects in a later section. Here we shall investigate the
combinatorial structures involved in the first part.

We shall give a simple combinatorial condition on the cover M, which is implied by the
existence of a global section s satisfying φM. Violation of this condition therefore suffices to
prove that no such global section exists.

For each m ∈ X , we define

M(m) := {C ∈M | m ∈ C}.

Proposition 7.1. If φM has a global section, then every common divisor of {|M(m)| | m ∈ X}

must divide |M|.

Proof. Suppose that there is a global section s : X → {0, 1} satisfying φM. Consider the set
X ′

⊆ X of those m such that s(m)= 1. Exactly one element of X ′ must occur in every C ∈M.
Hence there is a partition of M into the subsets M(m) indexed by the elements of X ′. Thus

|M| =

∑
m∈X ′

|M(m)|.

It follows that, if there is a common divisor of the numbers |M(m)|, it must divide |M|. ut

For example, if every m ∈ X appears in an even number of elements ofM, whileM has an
odd number of elements, then φM has no global section. This corresponds to the ‘parity proofs’
which are often used in verifying Kochen–Specker-type results [22, 35].

The simplest example of this situation is the ‘triangle’, i.e. the measurement cover with
elements

{a, b}, {b, c}, {a, c}.

This example has also been discussed, in a somewhat different context, in [36].
An example where X has 18 elements, and there are nine maximal compatible sets, each

with four elements, such that each element of X is in two of these, appears in the 18-vector
proof of the Kochen–Specker theorem in [22].

7.1. Kochen–Specker graphs

The measurement covers that can be represented by quantum systems are of a particular form:
they are generated by a symmetric binary compatibility relation, since compatibility in quantum
mechanics means that the observables pairwise commute. Thus, for example, the ‘triangle’
cannot arise from quantum observables.
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This suggests that we should take into account this feature. It turns out that this leads us
directly to some standard notions in graph theory.

An undirected graph G is specified by a finite set of vertices VG , and a set of edges EG ,
which are two-element subsets of VG . A clique of G is a set C ⊆ VG with an edge between every
pair of vertices in C . The set of maximal cliques of G forms a measurement cover MG .

Let G be a graph. A set S ⊆ VG is called a stable transversal [37] if for every maximal
clique C of G (i.e. for every C ∈MG), |S ∩ C | = 1. Note that it is necessarily the case that a
stable transversal is independent, i.e. there is no edge between any pair of elements of S, since
otherwise we could extend this pair to a maximal clique containing both.

Proposition 7.2. Let G be a graph. The formula φM defined onMG has a global section if and
only if G has a stable transversal.

Proof. Suppose that φM has a global section s. Then T := {m ∈ X |s(m)= 1} is a stable traversal
of G.

Conversely, suppose that T is a stable transversal of G. If we define s as the characteristic
function of T on X , then s |H ONE(C) for each maximal clique C of G, and so φM has a global
section. ut

In order to apply graph-theoretic results to the quantum situation, we need to know which
graphs can arise from families of quantum observables. For reasons that will be explained when
we discuss quantum representations in section 9, we are interested in graphs that can be labelled
by vectors in Rd , such that two vertices are adjacent if and only if the corresponding vectors are
orthogonal. It turns out that in graph theory, the complementary notion is used [38], so we shall
say that such graphs have a faithful orthogonal co-representation in Rd . We must also require
that the maximal cliques all have size d.

Thus we define Kochen–Specker graphs to be finite graphs G such that

• G has a faithful orthogonal co-representation in Rd ;

• the maximal cliques of G all have the same size d;

• G has no stable transversal.

Any such graph generates a measurement cover MG such that the formula φMG
has no

global section; and every such graph can be realized by quantum observables, as will be shown
in section 9. Thus, these graphs provide explicit finite witnesses for generic strong contextuality.
An example is provided by the orthogonality graph for R4 defined by the set of 18 vectors given
in [22], as well as the various sets of 31 or more vectors that have been found in R3 [2, 39–41].

A final desideratum is to provide a purely graph-theoretic condition for the existence of a
faithful orthogonal co-representation. In [38, 42] the following result is proved.

Theorem 7.3. Every graph on n nodes whose complementary graph is (n − d)-connected has
a faithful orthogonal co-representation in Rd .

We note that a general graph-theoretic approach to contextuality, on somewhat different
lines than ours, has been developed in [8]. Interesting connections are shown between
contextuality and Lovasz’s ϑ-function [43].

In [8], ‘compatibility structures’ are studied as sets of events rather than measurements.
This leads to the formalism of convex operational theories as ‘generalized probability theories’.
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By contrast, we distinguish between measurements, outcomes and events. This allows the
functorial presheaf structure of probabilistic models to be articulated. Moreover, we use
standard probability theory, as encapsulated in the distribution functor DR>0 . The non-classical,
contextual features of models arise from their functorial variation over contexts. At the same
time, this mathematical structure directly reflects the basic operational scenario described at the
beginning of section 2.

8. Global sections and hidden variables

We shall now consider a general notion of hidden-variable model, and show that an empirical
model is realized by a factorizable hidden-variable model if and only if it has a global section.

We are given a measurement cover M. We fix a set 3 of values for a hidden variable.
A hidden-variable model h over 3 assigns, for each λ ∈3 and C ∈M, a distribution
hλC ∈DRE(C). It also assigns a distribution h3 ∈DR(3) on the hidden variables. Note that
this distribution is independent of the context; this is the standard structural assumption of
λ-independence [44]. We require that for each λ ∈3, the family {hλC}C∈M is compatible, i.e.
for all C,C ′

∈M:

hλC |C ∩ C ′
= hλC ′|C ∩ C ′.

Just as compatibility for empirical models corresponds to no-signaling, compatibility for
hidden-variable models corresponds to the parameter independence condition [45, 46].

We say that a hidden-variable model h realizes an empirical model e if the probabilities
specified by e are recovered by averaging over the values of the hidden variable. Formally, this
says that for all C ∈M and s ∈ E(C):

eC(s) =

∑
λ∈3

hλC(s) · h3(λ).

The intended purpose of hidden-variable models is to explain the non-intuitive behavior
of empirical models, in particular those arising from quantum mechanics, by showing that it
can be reproduced by a model whose behavior is more intuitive, at the cost of introducing
hidden variables. In particular, one would like to explain the non-local and contextual behavior
predicted by quantum mechanics in this way. The general property which a hidden-variable
model should satisfy in order to provide such an explanation is factorizability, which subsumes
both Bell locality [1] and a form of non-contextuality at the level of distributions. It is defined
as follows.

We say that a hidden-variable model h is factorizable if, for every C ∈M, and s ∈ E(C):

hλC(s) =

∏
m∈C

hλC |{m}(s|{m}).

This says that the probability assigned to a joint outcome factors as the product of the
probabilities assigned to the individual measurements. Note, in particular, that if m ∈ C ∩ C ′,
then the compatibility condition on h implies that hλC |{m} = hλC ′|{m}. Thus the probability
distributions on outcomes of individual measurements are independent of the contexts in which
they occur.

For Bell-type scenarios, factorizability corresponds exactly to Bell locality [1]. More
generally, it asserts non-contextuality at the level of distributions.
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Our main result can now be stated as follows.

Theorem 8.1. Let e be an empirical model defined on a measurement cover M for a
distribution functor DR. The following are equivalent.

(i) e has a realization by a factorizable hidden-variable model.
(ii) e has a global section.

Proof. Proposition 3.1 shows that (ii) implies (i). It remains to prove the converse.
Suppose that e is realized by a factorizable hidden-variable model h. For each m ∈ X , we

define hλm := hλC |{m} ∈DRE({m}) for any C ∈M such that m ∈ C . By the compatibility of the
family {hλC}, this definition is independent of the choice of C . Also, we shall write s|m rather
than s|{m}. We define a distribution hλX ∈DRE(X) for each λ ∈3 by

hλX(s)=

∏
m∈X

hλm(s|m).

We must show that this is a distribution. We enumerate the set of measurements X as X =

{m1, . . . ,m p}. A global assignment s ∈ E(X) can be specified by a tuple (o1, . . . , op), where
oi = s(mi). Now we can calculate:∑

s∈E(X)

∏
m∈X

hλm(s|m)

=

∑
o1,...,op

p∏
i=1

hλmi
(s|mi)

=

∑
o1

hλm1
(m1 7→ o1) ·

∑
o2

hλm2
(m2 7→ o2) ·

· · ·

∑
op

hλm p
(m p 7→ op)

 · · ·


=

∑
o1

hλm1
(m1 7→ o1) ·

(∑
o2

hλm2
(m2 7→ o2) · (· · · (1) · · ·)

)

=
...

=

∑
o1

hλm1
(m1 7→ o1) · 1 = 1.

We now show that for each context C in M, hλX |C = hλC . We choose an enumeration of X such
that C = {m1, . . . ,mq}, q 6 p.

hλX |C(s)=

∑
s′∈E(X),s′|C=s

hλX(s
′)

=

∑
(o1,...,op),s=(o1,...,oq )

p∏
i=1

hλmi
(mi 7→ oi)

=

q∏
i=1

hλmi
(mi 7→ s(mi)) ·

 ∑
oq+1,...,op

p∏
j=q+1

hλm j
(m j 7→ o j)


= hλC(s) · 1 = hλC(s).

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


29

Now we define a distribution d ∈DRE(X) by averaging over the hidden variables:

d(s) :=
∑
λ∈3

hλX(s) · h3(λ).

We verify that this is a distribution:∑
s∈E(X)

d(s)=

∑
λ∈3

∑
s∈E(X)

hλX(s) · h3(λ)

=

∑
λ∈3

h3(λ) ·

( ∑
s∈E(X)

hλX(s)

)

=

∑
λ∈3

h3(λ) · 1 = 1.

It remains to show that d restricts at each context C to yield eC .

d|C(s)=

∑
s′∈E(X),s′|C=s

d(s ′)

=

∑
s′∈E(X),s′|C=s

∑
λ∈3

hλX(s
′) · h3(λ)

=

∑
λ∈3

h3(λ) · hλX |C(s)

=

∑
λ∈3

h3(λ) · hλC(s)

= eC(s).

Thus d is a global section for e. ut

This result provides a definitive justification for equating the phenomena of non-locality
and contextuality with obstructions to the existence of global sections.

9. Quantum representations

Since our aim is to investigate the general properties of systems and physical theories, it has
been important that our entire discussion has been conducted without presupposing quantum
mechanics, Hilbert spaces, etc. The mathematical structures which we have used have arisen in
a rather transparent fashion from the basic experimental scenario with which we began.

However, it is important to make explicit how the structures we have described can be
represented in quantum mechanics.

We begin with measurement covers. A quantum representation of a measurement cover on
a set X can be described as follows. We fix a Hilbert space H. As usual, an observable is a
bounded self-adjoint operator A on H. Two observables A, B are compatible if they commute:
AB = B A. In this case, the composite AB is again self-adjoint and hence forms an observable.

Given a set X= {Ax}x∈X of observables on H indexed by X , we form a measurement
cover by taking M to be the set of all maximal commuting subsets of X. Note that pairwise
commutation implies that the observables in each such subset, composed in any order, form
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a well-defined observable. We say that an abstract measurement cover M has a quantum
representation if it arises in this way.

For Bell-type scenarios, a quantum representation will have a particular form, reflecting
the usual idea that the measurements are carried out at a number of different sites, which may
be space-like separated. We will have a family {Hi} of Hilbert spaces, one for each part. The
elements of X i will index a family Xi of incompatible (i.e. non-commuting) observables on
Hi . We change these into local observables on the compound system H=H1 ⊗ · · · ⊗Hk by
defining Ai := I ⊗ · · · ⊗ A ⊗ · · · ⊗ I for each A ∈ Xi . Then, Ai commutes with B j whenever
i 6= j , and we can form a measurement cover of Bell type on the compound system.

It is interesting in this connection to discuss a result due to Tsirelson [47]. This result can
be stated, following [48], as follows.

Theorem 9.1. Let {X i} and {Y j} be finite, commuting sets of positive operators on a Hilbert
space H, generating finite-dimensional von Neumann sub-algebras of B(H). Then there exist
finite-dimensional Hilbert spaces H1 and H2 such that {X i} can be mapped isomorphically
into the sub-algebra of operators on H1 ⊗H2 of the form A ⊗ I , and {Y j} can be mapped
isomorphically into the sub-algebra of operators of the form I ⊗ B.

The import of this result is that, under the stated assumptions, tensor product structure can
be retrieved automatically as a special case of the general situation of commuting operators
on a single space. Thus, the special form of representation for Bell-type scenarios is not really
necessary, although it is the one which is commonly used.

Now we turn to events. For simplicity, we shall confine ourselves to the finite-dimensional
case. Recall that a self-adjoint operator A has a spectral decomposition

A =

∑
i∈I

αi Pi ,

where αi is the i th eigenvalue, and Pi is the projector onto the corresponding eigenspace.
Measuring a quantum state ρ with this observable will result in one of the observable outcomes
αi , with probability Tr(ρPi), while the state will be projected into the corresponding eigenspace.

For simplicity of notation, we shall focus on dichotomic quantum observables, i.e. self-
adjoint operators on a Hilbert spaceH with a spectral resolution into two orthogonal subspaces.
In this case, we can use a standard two-element set O = {0, 1} to label these outcomes, and the
sheaf E to record the collective outcomes of a compatible set of observables.

Thus for each basic measurement label m in X , we have an observable Am with spectral
decomposition Am = α0

mP0
m +α1

mP1
m , where P0

m + P1
m = I . Given a maximal set of commuting

observables C = {Am1, . . . , Amk }, for each s ∈ OC we have a projector Ps = Ps(m1)
m1

· · · Ps(mk)
mk

.
The composed observable AC = Am1 · · · Amk has a decomposition of the form

AC =

∑
s∈OC

αsPs,

where αs =
∏

i α
s(mi )
mi

. To ensure that these eigenvalues can be associated with distinct outcomes,
it is necessary that αs = αt implies that s = t . This can be achieved by appropriate choices of
the eigenvalues αi

m .
It may well be the case that this decomposition contains redundant terms, in the sense that

Ps = 0 for some values of s. The important point is that these projectors do yield a resolution of
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the identity: ∑
s∈OC

Ps = (P0
m1

+ P1
m1
) · · · (P0

mk
+ P1

mk
) = I k

= I.

Now we consider empirical models. Suppose we are given an empirical model e on a
measurement cover M, which has a quantum representation in the form described above,
based on a Hilbert space H. A quantum representation of e is given by a state ρ on H. For
each compatible set of observables C ∈M, the state defines a probability distribution ρC on
E(C), by the standard ‘statistical algorithm’ of quantum mechanics: ρC(s)= Tr(ρPs). Thus
ρC ∈DR>0E(C) for each C ∈M.

An interesting point now arises: do the distributions {ρC} necessarily form a compatible
family? In the case of a Bell-type scenario, the fact that they do is the content of the standard
no-signalling theorem [17]. However, Bell-type scenarios are very special cases of measurement
covers. We shall therefore verify explicitly that the distributions determined by a quantum state,
with respect to any family of sets of commuting observables, do form a compatible family in
the sense of sheaf theory. We can regard this as a generalized form of no-signaling theorem.

Proposition 9.2 (Generalized no-signaling). The family of distributions {ρC} on families
of commuting observables defined by a quantum state ρ are compatible on overlaps: for all
C, C ′:

ρC |C ∩ C ′
= ρC ′|C ∩ C ′.

Proof. Firstly, we define C0 := C ∩ C ′, C1 := C\C0, and C2 := C ′
\C0. Thus C is the disjoint

union of C1 and C0, and C ′ is the disjoint union of C2 and C0. Note that E(C)∼= E(C0)× E(C1),
and E(C ′)∼= E(C0)× E(C2). Thus we can write s ∈ E(C) as s = (s0, s1), and similarly for
sections in E(C ′). In this notation, P(s0,s1) = Ps0Ps1 . Now we can calculate

ρC |C0(s0)=

∑
s1∈E(C1)

ρC(s0, s1)

=

∑
s1∈E(C1)

Tr(ρP(s0,s1))

=

∑
s1∈E(C1)

Tr(ρPs0Ps1)

= Tr(
∑

s1∈E(C1)

ρPs0Ps1)

= Tr(ρPs0

∑
s1∈E(C1)

Ps1)

= Tr(ρPs0 I )

= Tr(ρPs0)

= ρC0(s0).

A similar computation shows that ρC ′|C0(s0)= ρC0(s0). Hence ρC |C ∩ C ′
= ρC ′|C ∩ C ′. ut
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Thus, we see that quantum mechanics obeys a general form of no-signalling, which
applies to compatible families of observables in general, not just those represented as operating
on different factors of a tensor product. This form of no-signaling says that, at the level of
distributions, the statistics obtained for a measurement on a given state are independent of the
context of other compatible measurements which may also have been carried out.

We can in fact use Tsirelson’s theorem 9.1 to reduce this result to the standard form of no-
signalling theorem.9 Given sets of commuting observables C and C ′, every operator in C ∩ C ′

commutes with every operator in the symmetric difference C∇C ′, so theorem 9.1 applies, and
we can represent these two sets of observables as acting on different factors of a tensor product.
The standard version of no-signalling can now be used to show that the marginals on the first
factor are independent of the choice of measurement on the second.

9.1. Greenberger, Horne and Zeilinger models

We shall briefly review how GHZ models, which were used in section 6, can be represented in
quantum mechanics. For n > 2, we take the Hilbert space to be the tensor product of n qubit
spaces. The local observables in each factor are the X and Y spin measurements, represented in
the Z basis by eigenvectors for spin Right or Left along the x-axis, with basis vectors

|↑〉 + |↓〉
√

2
,

|↑〉 − |↓〉
√

2

and similarly for spin Forward or Back along the y-axis, with basis vectors

|↑〉 + i|↓〉
√

2
,

|↑〉 − i|↓〉
√

2
.

We shall label the outcomes as 0 for spin Right for X and spin Forward for Y and 1 for spin Left
and spin Back, respectively.

The model is then generated by the GHZ state [12, 49], written in the Z basis as

|↑ · · · ↑〉 + |↓ · · · ↓〉
√

2
.

If we measure each particle with a choice of X or Y observable, the probability for each outcome
is given by the square modulus of the inner product

|〈GHZ | b1 · · · bn〉|
2,

where bi is the basis vector corresponding to the given outcome in the i th component.
This computation is controlled by the product of the |↓〉-coefficients of the basis vectors,

and hence by the cyclic group of order 4 generated by i .
The following table gives the coefficients of the |↓〉 components labelled by the

measurement and outcome:

0 1
X +1 −1
Y +i −i

9 We thank one of the journal referees for this observation.

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


33

The probability table for this model can be specified as follows.

• Each row with an odd number of Y measurements has full support.

• Each row in which the number of Y measurements is a multiple of 4 has as support those
entries with an even number of outcomes labeled 1.

• Each row in which the number of Y measurements is 4k + 2 has as support those entries
with an odd number of outcomes labeled 1.

• In each case, the distribution is uniform on the support.

Note that here by ‘row’ we mean a row of the probability table, i.e. the distribution on the set of
sections over a given measurement context.
Thus the interesting structure of this model arises purely from the support.

9.2. Kochen–Specker representations

We shall now discuss how the abstract discussion of Kochen–Specker situations in section 7 can
be represented in terms of quantum mechanics.

We shall consider a particular form of dichotomic observables. Given unit vectors
e1, . . . , ek representing distinct rays in a Hilbert space H, we write

Ae j := j · Pe j + 0 · P⊥

e j
.

Then we can take X= {Ae1, . . . , Aek } as a set of measurements. Note that Aei commutes with
Ae j if and only if ei is orthogonal to e j . Also, the composition of a set of commuting observables
{Aei }i∈I will have a spectral decomposition of the form∑

i∈I

i · Pei + 0 · P{ei |i∈I }⊥ .

If we measure any state with this observable, the outcome must be that we get exactly one of the
branches Pei , with eigenvalue i , or that we get ‘none of the above’, corresponding to the branch
P{ei |i∈I }⊥ , with eigenvalue 0. Moreover, if the cardinality of I equals the dimension of the Hilbert
space, then the latter case cannot apply.

If we now consider how outcomes are represented in the sheaf E, we see that we indeed
have an a priori condition on those sections s which can be in the support of a distribution
coming from a quantum state, as desired. Namely, using xi as a label for Aei and taking
s(xi)= 1 for the outcome corresponding to Pei for this observable, we see that the only sections
which are possible are those which assign 1 to at most one measurement. Moreover, for those
sets of compatible observables whose cardinality equals the dimension of the space—which
must necessarily be maximal, and hence will appear in the measurement cover—exactly one
measurement must be assigned 1.

Thus if we take a set of unit vectors indexed by X , such that each vector is contained in at
least one orthonormal basis indexed by a subset of X , the measurement coverM represented by
the observables Ax will have the following key property: for any quantum state ρ, the support of
the corresponding empirical model will satisfy the formula ONE(C) for each context C in M.
So the problem of exhibiting a state-independent form of strong contextuality has been reduced
to the problem of finding a Kochen–Specker graph, as described in section 7.
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9.3. Bell-type scenarios and Kochen–Specker theorems

The measurement covers arising from Bell-type scenarios are a rather special class, which can
be characterized as follows.

Proposition 9.3. A measurement coverM arises from a Bell-type scenario if and only if it is the
family of maximal cliques of a graph G = (X, EG) which is the complement of an equivalence
relation R on X:

EG = {{x, y} | ¬(x Ry)}.

Proof. Equivalence relations are in bijective correspondence to partitions X =
∐

i X i . The
maximal cliques of G are exactly the transversals of this partition, i.e. the sets T ⊆ X such
that T intersects with each X i in exactly one element. ut

Note, in particular, that in Bell-type scenarios, incompatibility is transitive. This is by no
means the general case. In terms of operators, A and B may commute, while C may fail to
commute with either.

The more complex configurations typical of Kochen–Specker constructions can never arise
from Bell-type scenarios.

Proposition 9.4. Consider a measurement cover M of Bell type, and any quantum
representation of M. For any s ∈ E(C) with C ∈M, there is a quantum state ρ such that s
is in the support of ρC .

Proof. Given s, we define the local state ρi := |ψi〉〈ψi | for each i , where ψi is the eigenvector
corresponding to the outcome specified by s for the measurement at i . Then the model defined
by the state ρ := ρ1 ⊗ · · · ⊗ ρn has s in its support. ut

Hence there is no Kochen–Specker-type theorem for Bell-type scenarios. While, as we
have seen, there are model-specific strong contextuality results, there are no generic results.
The measurement covers arising from these scenarios are simply not rich enough in their
combinatorial structure of overlapping intersections to support a result of this form.

10. Postlude

Our treatment of non-locality and contextuality makes a number of points.

• Firstly, it is carried out at a high level of generality, and without any presupposition
of quantum mechanics. None of the characteristic mathematical structures of quantum
mechanics, such as complex numbers, Hilbert spaces, operator algebras or projection
lattices, are needed to expose the key structural issues. This characteristic is shared to some
extent by other foundational approaches, such as generalized probabilistic theories [17], but
these formalisms are still rather closer to that of quantum mechanics, and indeed have been
directly suggested by it. Structures such as sheaves and presheaves varying over contexts
can be seen as basic elements of a general ‘logic of contextuality’, and related structures
have been used for a wide range of purposes, e.g. in the semantics of computation [51–53].
This opens up the possibility of making some interesting connections between the study of
non-locality and contextuality in physics, and ideas arising in other fields.

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://www.njp.org/


35

• The sheaf-theoretic language, which directly captures the idea of structures varying over
contexts, is a canonical setting for studying contextuality. Moreover, as we have seen, the
gluing conditions and the existence of global sections capture the essential content of non-
locality and contextuality in a canonical mathematical form.
This opens the door to the use of the powerful methods of sheaf theory, which plays a major
role in modern mathematics, in analyzing the structure of non-locality and contextuality.
These notions are still poorly understood in multipartite and higher-dimensional settings.
In [54], the first author, with Shane Mansfield and Rui Soares Barbosa, define an Abelian
presheaf based on the support of an empirical model. The C̆ech cohomology of this
presheaf with respect to the measurement cover is used to define a cohomological
obstruction to locality or non-contextuality, as a certain cohomology class. It is shown for
a number of salient examples, including PR boxes, GHZ states, the Peres–Mermin square
and the 18-vector configuration from [22] giving a proof of the Kochen–Specker theorem
in four dimensions, that this obstruction does not vanish, thus yielding cohomological
witnesses for contextuality. While these results are preliminary, they suggest that the use of
cohomological methods in the study of non-locality and contextuality has some promise.

• The canonical form of description of the key concepts in terms of the existence of global
sections largely replaces any explicit mention of hidden variables. These appear only in
section 8, in the context of a foundational result showing the equivalence of local hidden-
variable realizations to the existence of global sections. On the other hand, empirical
models, which can be seen as directly related to observation and experiment, play a
prominent role throughout the paper.

There is also an interesting conceptual point to be made in relation to incompatibility of
measurements. Usually, this is taken to be a postulate of quantum mechanics, and specific to the
quantum-mechanical formalism of non-commuting observables. However, in the light of general
results such as those obtained in this paper, in a line of work going back to that of Fine [23], a
different view emerges. The incompatibility of certain measurements can be interpreted as the
impossibility—in the sense of mathematically provable non-existence—of joint distributions on
all measurements which marginalize to yield the observed empirical distributions. Thus, if we
refer to the experimental scenario with which we began section 2, this shows that there cannot
be, even in principle, any such scenario in which all measurements can be carried out jointly,
which is consistent with the actually observed outcomes.

Thus the incompatibility of certain measurements is revealed as a theory-independent
structural impossibility result for certain families of empirical distributions. These families
include those predicted by quantum mechanics, and confirmed by experiment, but the result
itself is completely independent of quantum mechanics. Thus in this sense, we can say that
incompatibility is derived rather than assumed.

10.1. Related work

The present paper builds on our previous work, in particular [19] by the first author, and
[55, 56] by the second author (with H Jerome Keisler and Noson Yanofsky, respectively). A
natural direction for generalization of the results in the present paper would be from the finite
setting considered here to the measure-theoretic one studied in [55]; note that the distribution
functor can be defined over general measure spaces [57].
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Since we use sheaf theory as our mathematical setting, there is an obvious point of
comparison with the topos approach, as developed by Isham and Butterfield, Döring and Isham
and Heunen et al [58–60].

The general point that presheaves varying over a partially ordered set of contexts provide
a natural mathematical setting for studying contextuality phenomena is certainly a common
feature. It should also be mentioned that presheaves have been used for similar purposes in the
context of the semantics of computation, e.g. in the Reynolds–Oles functor-category semantics
for programs with state [51, 52] and in the presheaf models for concurrency of Cattani and
Winskel [53].

A more specific source of inspiration is the important insight given in [58], which initiated
the whole topos approach, that the Kochen–Specker theorem could be reformulated very
elegantly in presheaf terms as stating the non-existence of global sections of a certain presheaf.

On the other hand, there are several differences between this paper and the topos approach.
For example, the topos approach focuses on a specific structure, the spectral presheaf, based on
an operator algebra. In this sense, it uses concepts specific to quantum mechanics from the very
start. Moreover, many of the key structures introduced in our paper, such as the distribution
functor and measurement covers, do not appear in the topos approach. One of our central
objectives is to give a unified account of contextuality and non-locality, but locality issues have
not been considered in the topos approach; nor has extendability, another key topic for us. It
will, of course, be interesting to see if additional commonalities develop in future work.

The appearance of negative probabilities in quantum mechanics has a long history. The
Wigner quasi-probability distribution [14], further developed by Moyal [16], is a phase-
space representation of quantum mechanics using negative probabilities. Feynman views such
negative probabilities as a calculational convenience [17]. He explains that the appearance of a
negative probability for a certain outcome does not invalidate the theory being used. Rather, this
tells us that the relevant conditions cannot be realized or that the outcome cannot be verified
or both. More specifically related to what we do, Sudarshan and Rothman [61] show that a
local hidden-variable analysis of the Bell model is possible if certain values of the hidden
variable arise with negative probability. Finally, in Dirac [15], negative probabilities enter in
the relativistic extension of quantum mechanics.
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Appendix

Firstly, we recall some set-theoretic notations.
We write |S| for the cardinality of a set S. If f : X → Y is a function and X ′

⊆ X , we write
f |X ′ : X ′

→ Y for the restriction of f to X ′. We write Y X for the set of functions from X to Y ,
and P(X) for the powerset of X .

A family of sets {X i}i∈I is disjoint if X i ∩ X j =∅ whenever i 6= j . We write
∐

i∈I X i for
the union of a disjoint family. Given a disjoint family {X i}i∈I , there is an isomorphism

P

(∐
i∈I

X i

)
∼=

−→

∏
i∈I

P(X i) :: S 7→ (S ∩ X i)i∈I .

A category has a collection of objects A, B,C, . . . and arrows f, g, h, . . .. Each arrow has
specified domain and codomain objects: the notation is f : A → B for an arrow f with domain
A and codomain B. Given arrows f : A → B and g : B → C , we can form the composition
g ◦ f : A → C . Composition is associative, and there are identity arrows idA : A → A for each
object A, with f ◦ idA = f , idA ◦ g = g, for every f : A → B and g : C → A.

Our main examples of categories will be Set, with sets as objects and with functions as
arrows; and partially ordered sets (P,6), where there is a single arrow from p to q if p 6 q
and none otherwise. The opposite category Pop is the category formed from the opposite poset
(P,>).

If C and D are categories, a functor F : C−→D assigns an object F A of D to each object
A of C; and an arrow F f : F A → F B of D to every arrow f : A → B of C. These assignments
must preserve composition and identities: F(g ◦ f )= F(g)◦; F( f ), and F(idA)= idF A.

A presheaf on a poset P is a functor Pop
→ Set.
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[40] Bub J 1996 Schütte’s tautology and the Kochen–Specker theorem Found. Phys. 26 787–06
[41] Pavičić M, Merlet J P, McKay B and Megill N D 2005 Kochen–Specker vectors J. Phys. A: Math. Gen.

38 1577
[42] Lovász L, Saks M and Schrijver A 2000 A correction: orthogonal representations and connectivity of graphs

Linear Algebra Appl. 313 101–6
[43] Lovász L 1979 On the Shannon capacity of a graph Inf. Theory IEEE Trans. 25 1–7
[44] Dickson W M 1999 Quantum Chance and Non-Locality (Cambridge: Cambridge University Press)

New Journal of Physics 13 (2011) 113036 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1098/rspa.1942.0023
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1007/BF02817189
http://arxiv.org/abs/1007.2754
http://www.fqxi.org/community/forum/topic/569
http://dx.doi.org/10.1007/978-3-642-15240-5_1
http://dx.doi.org/10.1016/0375-9601(96)00134-X
http://dx.doi.org/10.1103/PhysRevLett.48.291
http://dx.doi.org/10.1088/0305-4470/36/26/312
http://dx.doi.org/10.1063/1.1928727
http://arxiv.org/abs/1105.1819v1
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1016/0375-9601(90)90172-K
http://dx.doi.org/10.1119/1.16503
http://dx.doi.org/10.1016/0375-9601(92)90952-I
http://dx.doi.org/10.1103/PhysRevLett.97.170409
http://arxiv.org/abs/1105.3598
http://dx.doi.org/10.1016/0020-0255(74)90008-5
http://arxiv.org/abs/1103.6058v1
http://arxiv.org/abs/1010.1273
http://dx.doi.org/10.1016/S0304-0208(08)72922-0
http://dx.doi.org/10.1016/0024-3795(89)90475-8
http://dx.doi.org/10.1088/0305-4470/24/4/003
http://dx.doi.org/10.1007/BF02058633
http://dx.doi.org/10.1088/0305-4470/38/7/013
http://dx.doi.org/10.1016/S0024-3795(00)00091-4
http://dx.doi.org/10.1109/TIT.1979.1055985
http://www.njp.org/


39

[45] Jarrett J P 1984 On the physical significance of the locality conditions in the Bell arguments Noûs 18 569–89
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