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Introduction - Breast cancer is the most prevalent cancer in women

Clinical subtypes

> There are 6 major clinical

LOE,R:;sk subtypes, determined by ER, PR
ER+ PR+ HER2- | and HER2 status
Low grade

Ki67 index low
Luminal features

> Prognosis and possible

GES low risk
‘ : treatments depend on the
" HER+ ER- subtype
ER- PR- HER2+
High grade
Basal-like
. features
 High grade
Ki67 index high
a>CQI’Yl) 9 excetencia - CJCbioGUNE mage:
» OCHOA B o s et Nolan, E., Lindeman, G. J., & Visvader, J. E. (2023).

hasque center for applied mathematics Deciphering breast cancer: from biology to the clinic. Cell.



Introduction - The majority of breast cancers (BC) are ER-positive (> 70%)

Clinical subtypes

ER+ - ER+
Low risk High risk
ER+ PR+ HER2- | | ER+ PR HER2-
Low grade Higher grade
Ki67 index low ’367“"‘19:‘ higher
Luminal features Qm nal features
GES low risk L GES high risk J

HER+ ER+
ER+ PR+ HER2+
High grade
Ki67 index high
Luminal features
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There are 6 major clinical
subtypes of BC, determined by
ER, PR and HER2 status

Prognosis and possible
treatments depend on the
subtype

70% of them are ER+, as they
express the estrogen receptor

These can be treated with
hormone therapy

Image:
Nolan, E., Lindeman, G. J., & Visvader, J. E. (2023).
Deciphering breast cancer: from biology to the clinic. Cell.



Introduction — Estrogen is a hormone that controls the development of breast cells
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ESTROGEN FUELS GROWTH AND CELL
DIVISION OF BREAST CANCER CELLS

ESTROGEN
MOLECULE
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OESTROGEN PROGESTERONE
RECEPTOR RECEPTOR

Binds to DNA
and changes
gene activity
N Ve
DNA

N

Signals tell cell
to keep dividing




Introduction — Hormone therapies target the estrogen receptor to impede growth

ESTROGEN FUELS GROWTH AND CELL
Tamoxifen DIVISION OF BREAST CANCER CELLS

Applied as a 5-year G ‘

H3C 0.
treatment after surgery TN C

_— CH3 \
Relapse by ~50% O “
i — (0]

Mortality by =30% oesmoc;en PROGESTERONE

RECEPTOR RECEPTOR
. ) ; Binds to DNA
> As an antagonist, tamoxifen binds to the estrogen receptor, ;gg:ggm;

keeping the estrogen from binding to it

V.Y
- - - - - - DNA
> Alternatively, other hormone therapies look to inhibit the synthesis

_ _ 7N
of estrogen in the first place Signals tell cell

to keep dividing
> Between 30%-50% of treatment can generate a resistant

response where it doesn’t work and treatment time is crucially

wasted
£ EXCELENCIA . . :
( ‘BCQW‘D r " SEVERO CIC G U N E Szostakowska,M. et al. (2019). Resistance to endocrine therapy in breast
AR % OCHOA ety s adieaaiing cancer: molecular mechanisms and future goals.
£ center for applied mathematics

Breast Cancer Research andTreatment, 173, 489-497.



Introduction — Some cells become resistant to the treatment and continue dividing

Tamoxifen

TamR cells
Resistant tumour

Development of
» . resistance
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Introduction — Some cells become resistant to the treatment and continue dividing

Tamoxifen
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How do we characterize a sample?

RNA-seq analyzes gene expression by
measuring the abundance of RNA transcripts

Transcripts serve as templates for protein
synthesis so they regulate cell functions

RNA-seq offers a picture into the state of a
cell and its activity

An usual RNA-seq provides information on
over 24.000 transcripts/genes

Is this where the heterogeneity appears? NO
Cell models are replicable and differences
can be controlled to a certain degree



Introduction — Some cells become resistant to the treatment and continue dividing

Tamoxifen
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How do we compare two biological states?

By taking RNA-seq of two different
conditions we can study how the abundance
of genes/transcripts in each of them

Differential Gene Expression is measured in
Fold Change, or how much abundant a
feaature is in one sample over the other

For cells, replicating an experiment can
produce multiple instances or replicates that
should give homogenous outputs

For patients, differences between them are
bigger (state of disease, external factors, age)
creating a more heterogeneous landscape.

It is important to tackle this heterogeneity to
identify problem specific biomarkers
(genes)



Data — Cell models are good for controlled experiments in homogeneous environments

Heatmap of biological replicates

> Clear distinctions arising from induced changes

3 biological
- replicates
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Data — Patients are heterogeneous in their type of disease and conditions

The Cancer Genome Atlas
(TCGA)

> Public database with >1000 BC patients from USA
> RNA-seq + Extensive clinical records

> This allows a proper cleaning and classification of
patients where the administered treatment was
irregular or inconsistent

> Resulting cohort of patients with tamoxifen or other
hormone therapies and their response to

treatment

Tamofixen Hormone therapies

> 25 Good Responders
> 12 Resistant

> 87 Good Responders
> 40 Resistant
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A patient’s journey

> Helps classifying patients and reducing heterogeneity by
removing patients with non-cancer related issues
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The Cancer Genome Atlas
(TCGA)

> Public database with >1000 BC patients from USA

> RNA-seq + Extensive clinical records

> This allows a proper cleaning and classification of
patients where the administered treatment was

irregular or inconsistent

> Resulting cohort of patients with tamoxifen or other
hormone therapies and their response to

treatment

Tamofixen Hormone therapies

> 25 Good Responders
> 12 Resistant

> 87 Good Responders
> 40 Resistant
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Data — Heterogeneity is clearly present in the gene heatmap
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Analysis — Comparing cell and patients profiles

We can look at the distribution of differentially

expressed genes across patients and cells. 5.0-
By filtering out non-relevant genes we can try to ¥ od® o .
identify which ones behave similarly in these two o5

comparable resistance scenarios

log2FC_TCGA
o
o

log2FC_MCF7
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Analysis — Comparing cell and patients profiles

We can look at the distribution of differentially

expressed genes across patients and cells. 5.0

By filtering out non-relevant genes we can try to . .
identify which ones behave similarly in these two
comparable resistance scenarios

N
o

Filters:

> Genes with | log, Fold Change | > 0.5
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Analysis — Comparing cell and patients profiles

We can look at the distribution of differentially
expressed genes across patients and cells.

By filtering out non-relevant genes we can try to

identify which ones behave similarly in these two
comparable resistance scenarios

Filters:

> Genes with | log, Fold Change | > 0.5

> (Genes expressed in the same direction
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Analysis — Comparing cell and patients profiles

We can look at the distribution of differentially

expressed genes across patients and cells. 5.0

Opposite Sign creial Same Sign

(SYNPO2L |
By filtering out non-relevant genes we can try to °

identify which ones behave similarly in these two
comparable resistance scenarios
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Filters:

> Genes with | log, Fold Change | > 0.5
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Analysis — Gene signatures

A collection of genes that can be used to
represent or identify some biological process or
clinical condition is called a gene signature

We were able to use the homogeneous cell data to
select 17 genes related to tamoxifen resistance in
the heterogenous patient dataset

17 Gene Signature! DONE!
Bring down the curtain!

© ExceLENCIA
" SEVERO
) OCHOA

MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE

(bcam

hasgue center for applied mathematics

CICbioGUNE

log2FC_TCGA

5.01

N
o

-
(=]

o
o

Opposite Sign

FRAS1
MGATSB
°

14 S
AP2C

[SYNPO2L | ’W#
& R
) HERC1
VTN | :
INSIG2
{ TMC7
g J—

ame Sign

AREG|
[ ]
MT1X
Same Sign  [[incoooes Opposite Sign
-5 0 5

log2FC_MCF7




Analysis — The prevalence of random gene signatures

OPEN @ ACCESS Freely available online 2012 PLOS compurationaL sBioLoGy

Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome

David Venet', Jacques E. Dumont?, Vincent Detours®**

1 IRIDIA-CoDE, Université Libre de Bruxelles (ULB.), Brussels, Belgium, 2 IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium, 3 WELBIO,
Université Libre de Bruxelles (U.LB.), Campus Erasme, Brussels, Belgium
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Analysis — The prevalence of random gene signatures

OPEN @ ACCESS Freely available online 2012 PLOS compurationaL sBioLoGy

Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome
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Analysis — The prevalence of random gene signatures

OPEN @ ACCESS Freely available online 2012 PLOS compurationaL sBioLoGy

Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome

David Venet', Jacques E. Dumont?, Vincent Detours®**

1 IRIDIA-CoDE, Université Libre de Bruxelles (ULB.), Brussels, Belgium, 2 IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium, 3 WELBIO,
Université Libre de Bruxelles (U.LB.), Campus Erasme, Brussels, Belgium
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Analysis — Dealing with the issue random gene signatures
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Analysis — Dealing with the issue random gene signatures
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Results
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Results — Creating a model for the classification of resistant patients
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Results — Creating a model for the classification of resistant patients
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Results — Creating a model for the classification of resistant patients
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Results — Creating a model for the classification of resistant patients
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Results — Improving our initial gene signature
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Results — Selecting the best gene signature
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Results — Refinement of the 17 genes into a 6 gene signature
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Validation
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Validation — Two computational and one biological method

> We will use two independent > Allows the comparison of > RNA-seq data showed us a
and new patient cohorts multiple covariates (signatures) picture of the cell in the
moment it was sequenced
> Patients with high abundance > Bigger hazard values imply better
of the genes in our signature predictive capabilities for risk > (PCR experiments allows us
are considered High risk to measure the abundance

N of the genes in the signature
> Shows the probability of . directly in the cell
living without a relapse over h(t) o h'U + I I E:L'p(ann)
a period of time (10 years) of n=1
patients with High/Low risks
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Validation — Survival analysis in the smaller cohort with tamoxifen-specific data (KMplotter)
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Validation — Survival analysis in the bigger cohort for all hormone therapies (METABRIC)
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Validation — Our 6 Gene Signature outperformed many established signatures

5 Candidate Pathways 1.01 (0.75-1.38) 0.951496
SET ER/PR 1.33(1.03-1.73) 0.457182
HOXB13/IL17BR ratio 1.23(0.98-1.55) 0.032555
Men et al 10 Gene 1.38(1.08-1.75) 0.028390
Signature
CRISPR mutant ESR1 0.72(0.57-0.91) 0.007548
Oncotype DX 1.40 (1.08-1.80) 0.003053
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Validation — Initial biological confirmation of the computational results
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