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Topological Field Theory of Data:
Mining Data Beyond Complex Networks

MARIO RASETTI AND EMANUELA MERELLI

1.1 A Philosophical Introduction

It has become increasingly obvious that very detailed, intricate interactions and
interdependencies among and within large systems are often central to most of
the important problems that science and society face. Distributed information
technologies, neuroscience and genomics are just a few examples of rapidly
emerging areas where very complex large-scale system interactions are viewed
more and more as central to understanding, as well as to practical advances.
Decision makers in these environments increasingly use computer models,
simulation and data access resources to try to integrate and make sense of
information and courses of action. There is also mounting concern that, in spite of
the extended use of these simulations and models, we are repeatedly experiencing
unexpected cascading systemic failures in society. We feel that, without resolving
the issue of learning how to cope with complex situations, we also do not
know enough about our methods of modeling complex systems to make effective
decisions.

In the late eighties Saunders Mac Lane started a philosophical debate which,
over thirty years later, is still going on with varying interest in the outcomes.
This paper stems partly out of the crucial fundamental question that debate gave
life to in contemporary science. This deep long-standing philosophical question,
that can be formulated in several different ways, concerns mathematics. Are the
formalisms of mathematics based on or derived from the facts and, if not, how
are they derived? Alternatively, if mathematics is a purely formal game – an
elaborate and tightly connected network of formal structures, axiom systems and
connections – why do the formal conclusions in most of the cases fit the facts? Or,
is mathematics invented or discovered? In the language of Karl Popper, statements
of a science should be falsifiable by factual data; those of mathematics are not.
Thus mathematics is not a science, it is something else. Yet the mathematical
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network is tied to numberless sources in human activities, to crucial parts of human
knowledge and, most especially, to the various sciences.

What is intriguing is not only the number of connections between mathematics
and science, but the fact that they often bear on subjects which are at the very
core of the mathematical network, not just on the basic topics at the edge of the
network. The external connections of mathematics are numerous and tight, but they
do not fully describe or determine the mathematical subjects. Basic mathematical
concepts may be derived from human activity, but they are not themselves such
activity; nor are they the phenomena involved as the background of such activity:
the axiomatic method is a declaration of independence for mathematics.

Even though science has an inherent, natural tendency toward specialization,
contemporary mathematics is more and more pursuing a general theory of
structures. One such theory is category theory. “Category theory has come to
occupy a central position in contemporary mathematics and theoretical computer
science, and has also successfully entered physics. Roughly, it is a general
mathematical theory of structures and of systems of structures. As category theory
is still evolving, its functions are correspondingly developing, expanding and
multiplying.”1 It is first of all a powerful language, a conceptual framework
allowing us to see the universal components of a family of structures of a given
kind, and how structures of different kinds are interrelated.

The message emerging is: the subjects of mathematics are extracted from the
environment, that is from activities or phenomena of science and society. This
notion of extraction is close to the more familiar term abstraction, with the intent
that the mathematical subject resulting from an extraction is indeed abstract.
Mathematics is not about human activity or phenomena, it is about the extraction
and formalization of ideas and their manifold consequences. The formalization
of such ideas in certain cases took centuries, but then it often opened the way to
deep unexpected interconnections that in turn opened the way to looking at certain
human activities in a completely new and diverse fashion.

The forces driving the development of the mathematical framework are
manifold: for instance, generalization from specific cases, by analogy or by
modification, and abstraction (once more) by analogy, or by deletion or yet by
shift of focus; the appearance of novel problems; or simply, just plain curiosity.
But questions arising from the variety of human and scientific activity have been
and can be the most important sources of novel mathematics. Computer science
also brings up new mathematical ideas. There is a wealth of new algorithms which
bear on decisive conceptual aspects, such as the subtle question of computational
complexity.

1 Stanford Encyclopedia of Philosophy
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Topological Field Theory of Data 3

On the other hand probably the most important fact in modern science is that
dramatic change in paradigms that has seen reductionism challenged by holism.
This is the story: an integrated set of methods and concepts have emerged in
science since the mid-eighties under several designations, of which complexity
science is the simplest and most comprehensive. Complex systems can be simply
defined as systems composed of many non-identical elements, entangled in loops
of nonlinear interactions. A typical example is neurons in the brain cortex. The
challenge is to describe the collective properties of these systems, getting from the
mere description of their components to the global properties of the whole system –
in the example, from the description of neurons to the cognitive properties of the
brain.

A difficult issue arises here, for when the composing elements and their
interactions are highly simplified, the global properties are typically very hard to
predict. The global description in terms of attractors of system model dynamics
can be a strong and insightful simplification with respect to a full description
of the microscopic components; this is exactly the same in thermodynamics,
where global properties of a system can be described independently from the
complete description of its microscopic elements, which is partially done, instead,
by statistical mechanics. Yet, a real theory of complex systems, relating to the wide
phenomenology of complex phenomena and data in the way in which statistical
mechanics is related to thermodynamics, is still missing.

There is an overwhelming evidence that the current emphasis of numerous
sciences, not only sciences of nature but sciences of society as well, on this
novel paradigm of complexity (holism versus reductionism) sorely requires a
rigorous scientific framing of its methodologies, which is not yet available. If it
is true that wide classes of systems and problems from various disciplines share
universal features that lead us to imagine the existence of common structures
directing their dynamics, it is equally true that the simplified schemes whereby
they are handled, once reduced to the conventional form of decision problems,
can often be approached and solved only by resorting to very drastic, generally
ad hoc simplifications. All problems dealt with in the framework of multi-agent
complex systems, usually approached by network theory, belong to this latter
family, which includes a huge number of applications, from bio- and eco-systems
to economic and sociological decision making issues. Such simplifications are
typically dictated by the utter lack of mathematical tools that are powerful or
flexible enough to lead to a true theory.

A typical feature of complex systems is the emergence of nontrivial superstruc-
tures that cannot be reconstructed by a reductionist approach. Not only do higher
emergent features of complex systems arise out of the lower level interactions,
but the patterns that they create act back on those lower levels. This ensures that
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complex systems possess a characteristic robustness with respect to large scale or
multi-dimensional perturbations or disruptions, whereby they are endowed with
an inherent ability to adapt or persist in a stable way. Because of their inherent
structure, which requires analysis at many scales of space and time, complex
systems face science with unprecedented challenges of observation, description
and control. Complex systems do not have a blueprint and are perceived only
through very large amounts of data. Therefore a typical task scientists are required
to face is to simulate, model and control them, and mostly to develop theories for
their behavior, control, management or prediction.

In science, methods generally come before theory; theory is the synthesis of
knowledge gained by the application of systematic or heuristic methods. Although
wide classes of systems from various disciplines share universal features that
lead us to imagine the existence of common structures, their analysis is often
based on drastic, generally ad hoc, simplifications, and their description resorts
to the specific language proper to the most affine discipline, losing the richness of
universality. On the other hand, a full theoretical understanding, for example, of the
mechanism linking individual and collective behavior, along with the possibility
of exploring the related systems with sufficiently powerful reliable simulations,
cannot but lead to profound new insight in various areas. Metaphors should be
avoided: metaphors are dangerous, because a metaphor is not a theory nor does it
give much indication on specific applications.

To bridge the extraction of mathematical structures out of the phenomenology
of complexity science and to give life to an efficient and complete collection of
concepts and methods of mathematics appropriate for complexity theory is the
challenge, and the most universal, potential setting frame for this is category
theory: namely the construction of categorical structures for system modeling.
Born with the aim of reorganizing algebra, looking not only at the objects (sets,
groups, or rings) but also at the mapping between them (functions between sets,
homomorphisms between groups or rings), category theory provides an elegant
conceptual tool for expressing relationships across many branches of mathematics.
It considers mathematical relations as arrows between objects. This approach fits
in our case not only algebra but topology, where the arrows are continuous maps
and objects are spaces, and geometry, with arrows that are smooth maps and
objects which are manifolds. Category theory is a powerful, far-reaching formal
tool for the investigation of concepts such as space, system, and even truth. It
can be applied to the study of logical systems at the syntactic, proof-theoretic,
and semantic levels. It is an alternative to set theory, with a foundational
role for mathematics and computer science that answers many questions about
mathematical ontology and epistemology.
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Topological Field Theory of Data 5

Clearly, the choice to use the language of categories should not be made a
priori, but should naturally impose itself due to the need to translate the seemingly
purely mathematical objectives related to basic complexity science questions into
theoretical computer science issues, and to establish a number of conceptual
paradigms and technical instruments.

In complex systems, reconstruction is searching for a model that can be
represented as a computer simulation program able to reproduce the observed data
reasonably well. In this sense, reconstruction is the inverse problem of simulation.
The statistics community addresses two closely related questions, namely, what
is a statistical model? and what is a parameter? These questions, that are deeply
ingrained in applied statistical work and reasonably well understood at an intuitive
level as they are, are absent from most formal theories of modeling and inference.
Whilst using category theory, these concepts can be well defined in algebraic
terms, proving that a given model is a functor between appropriate categories. The
objective that will guide us here is to construct an articulated and extended pathway
connecting globally many apparently isolated (sub-)structures – those belonging to
the functional (language) and behavioral (dynamics) features of complex systems;
i.e., not simply gluing together a collection of local maps. This will be done by
resorting to the language of category theory.

The novel approach to the problems of data-based complexity science described
in this paper consists in the setting up of a new methodology, which is a sort of
algebraic (in the sense of algebraic topology) complex systems theory, that pursues
the idea that there exist suitable categories A and B, functors F : A→ B and
G : B→ A, and a natural equivalence between them h : F ∼ G, such that: F is
a simulation and G is a reconstruction. In such schemes, systems of systems may
be represented by n-categories, i.e., categories whose objects are arrows, arrows
between arrows, and so on. Emergence may happen in any graph representing
relationships between agents or multi-agents, in which spaces (or objects of some
category) are attached to the vertices, and maps (or morphisms) are attached to the
edges. As will be discussed in detail below, one can build out of such a graph an
associated simplicial complex, whose persistent homology is the way to study its
shape in a functorial way. Adaptivity arises in this way. Notice that no limitation
is imposed in this perspective on the topology of the underlying graph, i.e., loops
and self-loops are allowed, implying that systems with feedback can be included.

The categories to be involved in the conceptual scheme – why they emerge
and how they can be linked together up to the completion of a global picture –
come naturally out of the rationale of going beyond the traditional point of view
and paradigms (networks, predicates, multi-agent schemes) by introducing in the
framework of complex system theory the study of spaces in place of agents,
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connecting them by morphisms instead of functions. Then one shall be able,
from the study of the homology of the simplicial complexes generated by data
clouds, to turn the data environment into a space of random variables connected
by conditional probability distributions.

Categorification, the process of finding category-theoretic analogues of
set-theoretic concepts by replacing sets with categories, functions with functors,
and equations between functions with natural isomorphisms between func-
tors satisfying the required coherence laws, can be iterated. This leads to
n-categories, algebraic structures having objects, morphisms between objects,
and also 2-morphisms between morphisms and so on up to n-morphisms. The
morphisms of the old category preserve the additional structure.

This can be achieved through the description of the process algebras involved
in terms of quivers and path algebras, and their representations. A quiver Q is a
directed graph, possibly with self loops and multiple edges between two vertices.
A representation of Q in a given category C is obtained by attaching an object
o ∈ C to each vertex of Q and labeling each arrow of Q by a morphism between
the objects sitting on its vertices. Given Q and C there exists an algebra, PQ, such
that a representation of Q in C is the same representation that would be obtained
from PQ in C. Oriented paths in Q can be multiplied by concatenation and form
a basis of PQ. This gives an equivalence of categories and allows us to study the
local properties of the quiver globally by means of its path algebra in a new scheme
that is a very rich algebraic structure.

Graphical models, i.e., probabilistic models in which a graph describes the
conditional independence structure between random variables, are commonly
used in probability theory, statistics (particularly Bayesian statistics) and machine
learning. The rules of discrete probability express the observed probabilities as
polynomials in the parameters, parameterizing the graphical model as an algebraic
variety. Belief propagation, Judea Pearl’s algorithm, and all message passing
methods of this kind are rooted in an environment of this sort. This work aims
to overcome the limitations of these methods by importing the analysis tools from
algebra, algebraic topology and quiver theory.

Homology is the mathematical device that converts information about a
topological space into an algebraic structure in a functorial way. This implies
that topologically equivalent (homotopic) spaces have algebraically equivalent
(isomorphic) homology groups, and that topological maps between spaces induce
algebraic maps (homomorphisms) on homology groups. Different homology
theories have been developed for different spaces and needs; here we are interested
in a special kind of homology which is called persistent homology. Given a discrete
set in a higher dimensional space, persistent homology will allow us to attach to it a
homological complex, which in turn will allow us to study the shape of the data set.
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Topological Field Theory of Data 7

Long-lived topological features can thus be distinguished from short-lived ones in
data sets, resorting to the simplicial complexes one can construct out of complex
networks. The persistent homology of the complex identifies a graded module over
a polynomial ring.

Most algebraic and combinatorial/configurational properties of the represen-
tation methods, such as structural isomorphism classes over graphs, maps and
orders of local state evaluation, give rise to moduli over multi-graded vector spaces
which are quiver representations. However, nearly all the usual homogeneity,
symmetry and approximately infinite sizes that are essential for conventional
statistical mechanics and other simplifications such as those necessary for the
pursuit of network scaling and scale-free properties, are simply not present
in meaningful treatments of interaction-based systems. The world of complex
systems data is a much stranger, richer and more beautiful world than that.
The challenge of understanding the collective emergent properties of these
systems, from knowledge of components to global behavior is this: will Wigner’s
notion of “unreasonable effectiveness of mathematics” hold for complex systems
as well?

Another deep philosophical question behind our work is an important one that
was recently brought up by Vint Cerf [1]: whether or not there is any real science
in computer science, namely if all the well posed questions can be approached by
a truly scientific methodology: universal and self-contained. Of course, whenever
computing implies the use of formal methods, i.e., mathematical techniques of
some kind, it is reasonable to say that there is a rigorous element of science in
the field. Computability, complexity analysis, theorem proving, correctness and
completeness analysis, etc., are all abilities that fall into the category scientific.
Since computing is a dynamical process rather than a static process, there is a need
for stronger scientific tools that allow us to predict behaviors in computational
processes. The challenge lies in being able to manage the explosive state space
that arises from the interaction of the processes themselves with inputs, outputs,
and with each other. In computer science, the need to constrain the unprecedented
width of the state space range is often dealt with through the use of abstraction.
Modeling is a form of abstraction, adequate to represent systems with fidelity,
i.e., well defined in the abstract representation and suitable to be rigorously
analyzed. Judea Pearl’s causal reasoning in conditional probabilities is grounded
on graphical models, linking the various conditional statements in chains of
cause-effect: this introduces a sort of inherent time variable (reminding us of the
arrow of time proper to statistical physics – the link being provided by entropy)
and hence the ground for true dynamics.

Such a scenario is represented by diagrams analogous to those of Feynman’s
representation of quantum field interactions, that make it possible to construct

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.002
Downloaded from https:/www.cambridge.org/core. University of Sussex Library, on 27 Mar 2017 at 09:46:09, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.002
https:/www.cambridge.org/core
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analytic equations that not only characterize the problem, but make its solution
computable. Both are abstractions of complex processes, which aid our ability
to analyze and make predictions about the system’s behavior. Abstraction is
a powerful tool: it eliminates unimportant details while revealing structure; a
way of dealing with the problem that recalls statistical mechanics (smoothing
out fluctuations, interaction-induced noise, renormalization) and chaos theory
(the dynamical disorder effect of nonlinearity), where patterns emerge despite
the apparent randomness of the processes. Our ability to understand and make
predictions on data-represented complex processes rests on our cleverness in
creating more efficient high-level query languages that allow unnecessary details
to be suppressed and theories to emerge.

Information technology is facing its fifth revolution: the era of Big Data Science
is challenged to handle information at unprecedented scales and needs to do
so under diverse perspectives which share the common objective of selecting
meaningful information from data. This means to be able to identify, within the
space of data, the existing, typically hidden, correlation patterns, and formalize
a consistent description of the data space structure that thus emerges. Such a
structure contains the inherent, explicit representation of the organized information
that data encode. Big Data Science needs to treat this massive corpus as a
laboratory of the human condition. The challenge that arises is different, not only
because it is much harder, but because – as the motto of complexity science asserts
– more is different.

In this context, a 2008 editorial of Wired magazine with the provocative title
“The End of Theory” prospected the idea that computers, algorithms and Big
Data may generate more insightful, useful, accurate, true results than scientific
theories, which traditionally rely on carefully crafted, targeted hypotheses and
research strategies. This provocative notion has indeed entered not just the popular
imagination, but also the research practices of corporations, governments and also
academics. The idea is that data, shadow of information trails, can reveal secrets
that we were once unable to extract, but that we now have the prowess to uncover,
with no need of resorting to any underlying or pre-existing conceptual model.

Present work grows out of the conviction that, at today’s scale, information is no
longer a matter of simple low-dimensional taxonomy statistics and order, but rather
of dimensionally agnostic pattern individuation. It calls for an entirely different
approach; one that requires us to renounce the tether of data as something that can
be embraced in its entirety. It instead forces us to view data mathematically, so as
to be able to extract from it such rigorous information that will permit establishing
its context. We claim that, contrary to the Wired magazine prophecy, this can be
done and must be done, which establishes a well-defined theoretical context for a
complex process that is unprecedentedly hard to handle. In other words, it is not
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Topological Field Theory of Data 9

true that we no longer need to speculate and hypothesize, while simply we have
to let machines lead us to patterns, trends, and relationships. We need to have a
conceptual frame for handling the impending data deluge if we want to understand
and control its implications, and construct a fully innovative theoretical conceptual
structure that is a consistent stage for all plays.

On the other hand, a characteristic feature of complex systems is the emergence
of nontrivial superstructures that cannot be reconstructed by a reductionist
approach. Our goal is to build a tool for discovering directly from the observation
of data those mathematical relations (patterns) that emerge as correlations among
events at a global level, or alternatively, as local interactions among systemic
components. Not only do higher emergent features of complex systems arise out of
such lower level interactions, the patterns they create may also react back, implying
the capacity to develop tools to support a learning process as well.

We develop here a topological field theory for data space, a concrete (though
conceptual) objective that is itself proof-of-concept of its breakthrough capacity.
The problem at stake can be seen as a far-reaching evolution/generalization of
data mining, which is the analysis step of knowledge generation in data sets, and
focuses on the discovery of unknown features that data can conceal. Data mining
uses typically artificial intelligence methods (such as machine learning), but often
with different goals. Machine learning employs unsupervised learning to improve
the learner accuracy in the design of algorithms, allowing computers to evolve its
major focus: to recognize complex patterns in data and make intelligent decisions
based on it. The difficulty here is that the set of all possible behaviors, given all
possible inputs, is too large to be covered by the set of observed examples (training
data). Predictions are based on known properties learned from the training data: the
true task of data mining is then the automatic analysis of large quantities of data,
aimed at extracting interesting patterns to be used in predictive analytics. We argue
that the data tsunami we are facing can be dealt with only by mathematical tools
that are able to incorporate data in a topological setting, enabling us to explore
the space of data globally, so as to be able to control its structure and hidden
information.

In spite of their robustness – namely the capacity they are endowed with to
adapt and persist in stable forms – and the emphasis of science on the paradigm of
complexity, complex systems are hard to represent and harder to predict. One of
the reasons for this is that complex systems knowledge is mostly based not on a
shared, well-defined phenomenology, but on data. Yet there are clear elements of
universality in the dynamical features of such systems. A real theory of complex
systems having a direct bearing on complex phenomena and data in the same way
as statistical mechanics bears on thermodynamics, is still not available. A deeper
question is thus: can it ever be available? Gödel’s theorem and Cantor’s set theory
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appear to forbid it, implying as they do that an infinite multiplicity of conceptual
models should exist, but the challenge of a statistical dynamics with no background
ergodic hypothesis, no thermodynamic limit, no identical particles (agents), and
above all, not based on repeatable experiments but data driven, is certainly there
and needs to be faced. The latter reason is what makes us focus our attention first
on the Big Data issue.

Data collection, maintenance and access are central to all crucial issues of
society, because the increasingly large influx of data bears not only on science
but on a correct governance of all societal processes as well. Large integrated
data sets can potentially provide a much deeper understanding of nature but they
are also critical for addressing key problems of society. We claim that the data
tsunami we are facing can be dealt with only with mathematical tools that are able
to incorporate data information in a geometric/topological way, based on a space
of data thought of as a collection of finite samples taken from (possibly noisy)
geometric objects.

Our work rests on three pillars, interlaced in such a way as to reach the specific
objective of devising a new method to recognize structural patterns in large data
sets, which allows us to perform data mining in a more efficient way and to extract
more easily valuable effectual information. Such pillars are: i) topological data
analysis (homology driven), and the related geometric/algebraic/combinatorial
architecture; ii) topological field theory for data space as generated by the
(simplicial complex) data structure, the construction of a measure over data
space, and the identification of a gauge group; iii) formal language (semantic)
representation of the transformations presiding the field evolution.

1.2 The Reference Landscape

Complex Systems are ubiquitous: they are complex, multi-level, multi-scale
systems and are found everywhere in nature and also in the Internet, the brain,
the climate, the spread of pandemics, in economy and finance; in other words, in
society. Here we intend to address the deep, intriguing question that has been raised
in a previous section about complex systems: can we envisage the construction of a
bona fide Complexity Science Theory? In other words, does it make sense to think
of a conceptual construct playing for complex systems the same role that Statistical
Mechanics played for Thermodynamics?

As it has already been mentioned, the challenge is indeed enormous. In
statistical mechanics a number of assumptions play a crucial constraining role:
i) ergodicity, ensuring that all accessible states of the system considered are visited
with equal probability; ii) the so called thermodynamic limit, N →∞, requiring
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Topological Field Theory of Data 11

that the number of degrees of freedom N (proportional to the number of particles,
measured essentially by the Avogadro number), could be assumed as essentially
infinite; iii) particles are identical (or possibly indistinguishable): particles of
the same species are identical and interact with each other pairwise all in the
same way, that is, obeying the same interaction law – in the quantum case they
are indistinguishable; iv) an analytical structure is definable for the underlying
dynamics, namely equations of motion exist at the micro-scale – analyticity
breaking and singularities only appear as a signal of the macro-phenomenon of
phase transition; v) experiment-based – phenomenology, implying that phenomena
are repeatable, as in reductionist science: under the same initial and boundary
conditions the same experiment must give the same outcome.

In contrast, typically complex systems, in particular those representing societal
phenomena, have the following hallmarks: i) they are NOT ergodic; ii) their
number of agents, N, is ordinarily finite, even though it can be large on a social
scale; iii) their agents are NOT identical – they are quite distinguishable complex
systems themselves, with their strategies and autonomous behaviors; iv) they are
NEVER representable by analytic, perhaps in certain cases not even by recursive,
functions; v) above all, they are DATA-based, usually NO repeatable experiment
is possible under external control.

The world we live in is no doubt complex and dramatically data-based. More
than 4 billion people (more than half of the world’s population) own a mobile
phone (which makes this the first device in human history owned by more than a
half of the world’s inhabitants); every day over 300 billion e-mails and 25 billion
SMSs are exchanged, 500 million pictures are uploaded on Facebook, etc. The
information created and exchanged in a year added up in 2013 to 4 zettabytes
(1 zettabyte = 1021 bytes) and every year it grows 40% (in 4 years it will reach
a yottabyte, 1024, a number larger than Avogadro’s number!). For this reason we
concentrate first on the last item of the above list: data, indeed Big Data. The
challenge is to extract all the information, as a norm hidden within, from the huge
collection of data flowing in and around complex systems.

Big Data have a variety of diverse features. They have always been present
in science where they have played a central role (though today even science
has difficulties in dealing with the immense quantity of data made available
by measures and experiments; see, e.g., the Hubble and Genome projects, the
CERN data archive, etc.): typically scientific data is well organized in high quality
data-bases. Today Big Data also plays a role in society, where it may for the
first time allow for a true societal tomography, making possible predictions not
envisioned before (see, e.g., the H1N1 pandemics of 2009), or for unprecedented
targets and strategies. Big Data pose a demanding hardware challenge, (high
performance computing), and also a strenuous data manipulation challenge, both

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.002
Downloaded from https:/www.cambridge.org/core. University of Sussex Library, on 27 Mar 2017 at 09:46:09, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.002
https:/www.cambridge.org/core
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in computer science (new computing paradigms; interaction-based computing;
beyond the Turing machine) and data analytics (new approach to data mining;
nonlinear causal inference). Also, the ever-more blurred boundaries between the
digital and physical worlds that characterize our digitalized global world are bound
to progressively fade away as IT becomes an integral part of the fabric of nature
and society.

A parallel goal is to endow IT with innovation and to use more and more efficient
tools to play its role in the hard process of turning data into information, informa-
tion into knowledge, and eventually knowledge into wisdom; in other words, to give
life to a new paradigm for data manipulation capable of managing the complex
dialectic relations between structural and functional properties of systems, in a
way analogous to that with which the human brain interacts with information and
behaves as a set of embodied computers. An exercise in artificial intelligence.

We explore the possibility of taming Big Data with topology (the geometry of
shapes), building on a fundamental notion from computer science when dealing
with data: the concept of space of data. It is the latter that provides the structure
(represented geometrically) within which information is encoded, such as the
frameworks for algorithmic (digital) thinking, and the lode in which to perform
data mining, i.e., to extract patterns of correlated information. It is the very
notion of data space that engenders the objective: finding new ways – based
on its geometrical (topological) and combinatorial features – to extract (mine)
information from data.

The ideas proposed by Carlsson, Edelsbrunner and others will now be expanded
upon. They all argued that geometry and topology are the natural tools to handle
large, high-dimensional, complex spaces of data in this process. Why? Because
global, though qualitative, information is relevant; data users aim to obtain
maximum knowledge, i.e., to understand how data is organized on a large, global
scale rather than locally. Metrics are not theoretically justified: while in physics,
most phenomena naturally lead to elegant, clear-cut theories which imply – as
an outcome of the theory itself – the metrics to be used; in the life or social
sciences this is either less cogent or it is simply not there. Coordinates are not
natural: data is typically conveyed and received in the form of strings of symbols,
typically numbers in some field, and vector-like objects whose components have
no meaning as such and whose linear combinations are not objects in data space.
In other words, the space of data is not a vector space. Thus those properties of
data space that depend on a specific choice of coordinates cannot be considered
relevant. Summaries only are valuable. The conventional method of handling data
is based on the construction of a graph (network) whose vertex set is the collection
of points in data space (each point possibly itself a collection of data) where two
vertices are connected by an edge if their proximity measure is, say, less than a
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given threshold η; followed by the attempt to find (determine) the optimal choice
of η. The complete diagram that illustrates the arrangement produced by data
hierarchical clustering is, however, much more informative. It is able to capture
at once the summary of all relevant features with all possible values of η. The
difficulty is to get to know how the global features of data space vary upon
varying η.

For all these reasons the methods to be adopted should be inspired by topology,
because: topology is the branch of mathematics that deals with both local
and global qualitative geometric information in a (topological) ambient space,
specifically connectivity, classification of loops and higher dimensional manifolds,
and invariants, which are properties that are preserved under homeomorphisms
of the background space. Topology studies geometric properties in a way that
is insensitive to metrics; it ignores the notion of distance and replaces it
just with the concept of proximity (η ≈ connective nearness, in the sense of
Grothendieck topology). Topology deals with those properties of geometric objects
that do not depend on coordinates but only on intrinsic geometric features; it is
coordinate-free.

Besides, and perhaps even more importantly, in topology relationships involve
maps between objects; thus they are naturally a manifestation of functoriality.
Also, the invariants are related not just to objects, but to maps between objects
as well. Thus functoriality reflects an inherent categorical structure, allowing for
computation of global invariants from local information.

Finally, the whole information about topological spaces is typically faithfully
contained in their simplicial complex representation, that is itself a piece-wise
linear (PL), combinatorially complete, discrete realization of functoriality. As
already mentioned, the conventional way to convert a collection of points in data
space into a global object is to use the vertex set of a network, whose edges are
determined by proximity. However, while such a graph is able to capture data
connectivity (a local property of the network), it ignores a wealth of higher order
global features, which are instead well discerned by a higher-dimensional object,
the simplicial complex, that can be thought of as the scaffold (the 1-skeleton) of
the graph. The latter is a PL space built by gluing together simple pieces (the
simplices) identified combinatorially along their faces, which are obtained by the
completion of the graph.

1.3 The Challenge

Current thinking in Information Technology is at the crossroads of different
evolution pathways. On the one hand, is what is now universally referred to as the
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14 M. Rasetti and E. Merelli

Big Data question [2], which urges fully innovative methodologies to approach
data analytics – in particular data mining – to be able to extract information from
data with the required efficiency and reliability. On the other hand, is the ever
increasing number of real world instances, in science as well as in society, of
problems that ask us to go computationally beyond Turing [3], which touches on
such basic issues as decidability, computability, and even embodied computation.

Following Cerf’s view, we assume modeling of computational processes as
the most inspiring candidate for the construction of a true theory that is able
to lead to credible predictions about complex processes through the analysis of
the large data sets that represent them. We also keep Pearl’s diagrams [4], whose
surprising analogy with Feynman’s representation of interactions in quantum field
theory, with cause-effect relations replacing time flow direction, which was already
previously mentioned, in mind as a reference paradigm for the construction of
analytic equations that not only fully characterize this type of problem, but make
their solution accessible. A crucial issue here is indeed to eliminate unimportant
details while revealing the relevant underlying structure: a method well known to
statistical mechanics (this is exactly what the renormalization group method does),
dealing with fluctuations and noise induced by interactions, and to chaos theory
(one of the dramatic dynamical effects of nonlinearity), where patterns emerge
despite the apparent randomness of the process.

This paper intends to describe a long-term program designed to generate a novel
pathway to face some of the challenges posed above – in particular, the issue
of sustaining predictions about the dynamics of complex processes through the
analysis of Big Data sets – by paving the way for the creation of new high-level
query languages that allow insignificant details to be suppressed and meaningful
information to emerge as mined out correlations. The main goal of this paper is to
find the definition of a theoretical framework, described essentially as a nonlinear
topological field theory, as a possible alternative to conventional machine learning
or other artificial intelligence data mining techniques, allowing for an efficient
analysis of and extraction of information from large sets of data.

The approach proposed differs from all previous ones in its deep roots in the
inference of globally rather than locally coded data features. Its focus is on the
integration of the pre-eminent constructive elements of topological data analysis
(facts as forms) into a topological field theory for the data space (which becomes
in this way the logical space of forms), relying on the structural and syntactical
features generated by the formal language whereby the transformation properties
of the space of data are faithfully represented. The latter is a sort of language of
forms recognized by an automaton naturally associated with the field theory.

This perspective has a profound, far-reaching philosophical meaning. As
Wittgenstein beautifully phrased it [5]: “The world is the totality of facts, not
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things. . . . The facts in logical space are the world. . . . A logical picture of the facts
is a thought.” and “To imagine a language means to imagine a form of life. . . . The
meaning of a word is its use in the language game.”

The decisive outcome of the approach proposed will be a way to extract directly
from the space of observations (the collection of data) those relations that encode –
by means of this novel language – the emergent features of the complex systems
represented by data; patterns that data themselves describe as correlations among
events at the global level, the result of interactions among systemic components at
local level. The complex system’s global properties are hard to represent and even
harder to predict, just because – contrary to what happens in traditional reductionist
science – complex systems knowledge in general does not bear on repeatable
experiments and phenomenology that, incidentally, provide the necessary shared
information leading to the statistical characteristics of the system properties,
but on data or on virtual artificial representations of real systems built out
of data.

There are three bodies of knowledge that constitute the three pillars our scheme
rests on, which need to operate synergically: i) homology theory; ii) topological
field theory and iii) formal language theory. The singular homology methods (i)
furnishes the necessary tools for the efficient (re-)construction of the (simplicial)
topological structures in the space of data which encode patterns. It enables us to
make topological data analysis homology driven and coherently consistent with
the global topological, algebraic and combinatorial architectural features of the
space of data, when equipped with an appropriate measure. The topological field
theory (ii) provides the construct, mimicking physical field theories (as connected
to statistical field theories), for extracting the necessary information to characterize
the patterns in a way that might generate, in view of the field nonlinearity
and self-interaction, the reorganization of the data set itself, as feedback. The
construction of the statistical/topological field theory of data space, is generated by
the simplicial structure underlying data space, by an action and the corresponding
fiber (block) bundle. An action depends on the topology of the space of data
and on the nature of the data, as they characterized by the properties of the
processes whereby they can be manipulated, a gauge group that embodies these
same two features: data space topology and process algebra structure. The formal
language theory (FLT) (iii) offers the way to study the syntactical aspects of
languages generated by the field theory through its algebraic structure, i.e., the
inner configuration of its patterns, and to reason and understand how they behave.
It allows us to map the semantics of the transformations implied by the nonlinear
field dynamics into automated self-organized learning processes. These three
pillars are interlaced in such a way as to allow us to identify structural patterns
in large data sets, and efficiently perform data mining. The outcome is a new
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16 M. Rasetti and E. Merelli

pattern discovery method, based on extracting information from field correlations
that produces an automaton as a recognizer of the data language.

1.4 Step One: Topological Data Analysis

The main pillar of the construction of our theory is the notion of data space, whose
crucial feature is that it is neither a metric space nor a vector space – a property that
is unfortunately still uncritically assumed even by the most distinguished authors
(see, e.g., Hopcroft and Kannan [6]) – but it is a topological space. This is at the
root of most aspects of the scheme proposed: whether the higher dimensional,
global structures encoding relevant information can be efficiently inferred from
lower dimensional, local representations; whether the reduction process performed
(filtration; the progressive finer and finer simplicial complex representation of the
data space) may be implemented in such a way as to preserve maximal information
about the global structure of data space; whether the process can be carried over
in a truly metric-free way [7]; whether from such global topological information
knowledge can be extracted, as well as correlated information, in the form of
patterns in the data set.

The basic principles of this approach stem from the seminal work of a number of
authors: G. Carlsson [8], H. Edelsbrunner and J. Harer [9], A. J. Zomorodian [10],
and others. Its fundamental goal is to overcome the conventional method of
converting the collection of points in data space into a network – a graph G
encompassing all relevant local topological features, whose edges are determined
by the given notion of proximity, characterized by parameter η that fixes a
coordinate-free metric for distance. Indeed, while G captures pretty well local
connectivity data, it ignores an abundance of higher-order features, most of which
have a global nature, and misses its rich and complex combinatorial structure. All
these can instead be accurately perceived and captured by focusing on a different
object than G, say S . S is a higher-dimensional, discrete object, of which G is the
1-skeleton, generated by combinatorially completing the graph G to a simplicial
complex. S is constructed from higher and higher-dimensional simple pieces
(simplices) identified combinatorially along their faces. It is this recursive and
combinatorially exhaustive way of construction that makes the subtlest features
of the data set, seen as a topological space X ∼ S , manifest and accessible.

In this representation, X has an hypergraph structure whose hyperedges
generate, for a given η, the set of relations induced by η itself as a measure of
proximity. In other words, each hyperedge is a many-body relational simplex,
namely a simplicial complex built by gluing together lower-dimensional relational
simplices that satisfy the η property. This makes η effectively metric independent:
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in fact an n-relation here is nothing but a subset of n related data points, satisfying
the property represented by η. Dealing with the simplicial complex representation
of X by the methods of algebraic topology, specifically the theory of persistent
homology that explores it at various proximity levels by varying η, i.e., filtering
relations by their robustness with respect to η, allows for the construction of a
parameterized ensemble of inequivalent representations of X. The filtration process
identifies those topological features which persist over a significant parameter
range, making them eligible as candidates to be thought about as signal, whereas
those that are short-lived can be assumed to characterize noise. Moreover, it
implicitly defines the notion of an η-parametrized semigroup connecting spaces
in the ensemble.

Key ingredients of this form of analysis are the homology groups, Hi(X),
i = 0,1, . . . , of X and in particular the associated Betti numbers bi, the i-th Betti
number, bi = bi(X), being the rank of Hi(X) – a basic set of topological invariants
of X. Intuitively, homology groups are functional algebraic tools that are easy to
deal with (as they are abelian) to pick up the qualitative features of a topological
space represented by a simplicial complex. They are connected with the existence
of i-holes (holes in i dimensions) in X. Holes simply mean i-dimensional cycles
which don’t arise as boundaries of (i+ 1) or higher-dimensional objects. Indeed,
the number of i-dimensional holes is bi, the dimension of Hi(X), because Hi(X)
is realized as the quotient vector space of the group of i-cycles with the group of
i-boundaries. In the torsion-free case, knowing the bi’s is equivalent to knowing
the full space homology and the bi are suffcient to fully identify X as topological
space.

Efficient algorithms are known for the computation of homology groups [11].
Indeed, for S , a simplicial complex of vertex-set {v0, . . . ,vN}, a simplicial k-chain

is a finite formal sum
N∑

i=1

ciσi, where each ci is an integer and σi is an oriented

k-simplex ∈ S . One can define on S the group of k-chains Ck as the free abelian
group which has a basis in one-to-one correspondence with the set of k-simplices
in S . The boundary operator

∂k : Ck → Ck−1 (1.1)

is the homomorphism defined by:

∂kσ =
k∑

i=0

(− 1)i(v0, . . . , v̂i, . . . ,vk), (1.2)

where the oriented simplex (v0, . . . , v̂i, . . . ,vk) is the i-th face of σ obtained by
deleting its i-th vertex.
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18 M. Rasetti and E. Merelli

In Ck elements of the subgroup

Zk = ker(∂k) (1.3)

are referred to as cycles, whereas those of the subgroup

Bk = im(∂k+1) (1.4)

are called boundaries.
Direct computation shows that ∂ 2 = 0, simply meaning that the boundary of

anything has no boundary. The abelian groups (Ck,∂k) form a chain complex in
which both Bk and Zk are contained; Bk is included in Zk.

The k-th homology group Hk of S is defined to be the quotient abelian group

Hk(S)= Zk/Bk. (1.5)

There follows that the homology group Hk(S) is non-zero exactly when there
are k-cycles on S which are not boundaries, meaning that there are k-dimensional
holes in the complex.

Holes can be of different dimensions. The rank of the k-th homology group, the
number

bk = rank(Hk(S)), (1.6)

the k-th Betti number of S , gives just a measure of the number of k-dimensional
holes in S .

Persistent homology is generated recursively, starting with a specific complex
S0, characterized by a given η = η0 and constructing from it the succession of
chain complexes Sη and chain maps for an increasing sequence of values of η, say
η0 ≤ η≤ η0+�, for some �. The size of the Sη grows monotonically with η, thus
the chain maps generated by the filtration process can be naturally identified with
a sequence of successive inclusions.

In algebraic topology most invariants are difficult to compute efficiently, but
homology is not: it is actually somewhat exceptional not only because – as we
have seen – its invariants arise as quotients of finite-dimensional spaces but also
because some of its properties can sometimes be derived from physical models.
In standard topology, invariants were historically constructed out of geometric
properties and manifestly able to distinguish between objects of different shape
but homeomorphically invariant globally. Other invariants were instead obtained
in physics, and these were in fact discovered, based, e.g., on topological quantum
field theory technology [12]. These invariants provide information about properties
that are purely topological but one cannot detect, not even guess, based only on
geometric representation.
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It is this perspective that we adopt here, namely the idea of constructing a
reliable physical scenario for data spaces, where no structure is visible. Physical
should of course be interpreted metaphorically: we aim to construct a coherent
formal framework in the abstract space of data, where no equation is available
giving the information it encodes as an outcome, that is capable to describe through
its topology the hidden correlation patterns that link data into information. This is
metaphorically analogous to what one has, say, in general relativity, when a given
distribution of masses returns the full geometry of space-time. Here we expect that
a given amount of information hidden in data would return the full topology of
data space. Of course we don’t have a priori equations to rely on, yet we argue
that a topological, nonlinear field theory can be designed over data space whereby
global, topology-related pattern structures can indeed be reconstructed, providing
a key to the information they encode.

All this bears of course on how patterns must be interpreted, as it deals rather
with pattern discovery than pattern recognition. This requires at least a remark.
In logic there are approaches to the notion of pattern that, drawing on abstract
algebra and on the theory of relations in formal languages – as opposed to others
that deal with patterns via the theory of algorithms and effective constructive
procedures – define a pattern as that kind of structural regularity, namely
organization of configurations or regularity, that one identifies with the notion of
correlations in (statistical) physics [13]. These logical paradigms will guide our
strategy.

A subtle and delicate issue here is that simplicial complex S (typically but
not automatically a finite Constantine Whitehead (CW) complex whose cellular
chain complex is endowed with Poincaré duality) is not necessarily a manifold;
it is only if the links of all vertices are simplicial spheres, which is, indeed, the
very definition of manifold in a piecewise linear context. The difficulty resides
in the feature that n-spheres are straightforwardly identifiable only for n = 1,2.
The problem is tractable for n= 3 and possibly 4 only with exponential resources,
and it is undecidable for n ≥ 5 [14]. However, given a singular chain complex S ,
a normal map endows it with the homotopy-theoretic global structure of a closed
manifold. Sergei P. Novikov proved that for dimS ≥ 5 only the surgery obstruction
prevents S from being homotopy equivalent to a closed manifold. The meaning of
this is the following: if S is homotopy equivalent to a manifold then the complex
behaves as the base space of a unique Spivak normal fibration, because a manifold
has a unique tangent bundle and a unique stable normal bundle. A finite Poincaré
complex does not possess such a unique bundle; nevertheless, it possesses an affine
fibration that is unique, which is just the Spivak normal fibration. This implies that
if S is homotopy equivalent to a manifold then the spherical fibration associated
to the pullback of the normal bundle of that manifold is isomorphic to the Spivak

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316403877.002
Downloaded from https:/www.cambridge.org/core. University of Sussex Library, on 27 Mar 2017 at 09:46:09, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781316403877.002
https:/www.cambridge.org/core


20 M. Rasetti and E. Merelli

normal fibration; but the latter has fiber a that is homotopically equivalent to a
sphere. This finally entails that all finite simplicial complexes have at least the
homotopy type of manifolds with boundary.

We further observe that all available algorithms to compute persistent homology
groups are based on the notion of filtered simplicial complex, consisting of pairs:
i) the simplex generated at each given step in the recursive construction, and
ii) the order-number of the step, a time-like discrete parameter that orders (labels)
the collection of complexes by the step at which that simplex appeared in the
filtration. The emerging picture can be naturally interpreted as the representation
of a process, which is endowed with inherent characteristic dynamics that remind
us of a discrete-time renormalization group flow [15]. One may then expect that, as
it happens with dynamical triangulations of simplicial gravity, the combinatorially
different ways in which one may realize the sampling of (inequivalent) structures
in the persistence construction process, varying the complex shape, give rise
to a natural probability measure. The measure thus generated is constrained
by and must be consistent with the data space invariants and transformation
properties.

1.5 Step Two: from Data Topology to Data Field

Besides the customary filtrations due to Vietoris-Rips [16], whose k-simplices are
the unordered (k+ 1)-tuples of points pairwise within distance η, and to Čech [17],
where k-simplices are instead unordered (k+ 1)-tuples of points whose 1

2η-ball
neighborhoods intersect, or other complexes such as the witness complex [18],
which provide natural settings to implement persistence, another filtration, Morse
filtration, needs to be considered, that enters here naturally into play.

In the case of those simplicial complexes that are manifold, Morse filtration is
a filtration by excursion sets, in terms of what for differentiable manifolds would
be curvature-like data. It is indeed a non-smooth, discretized, intrinsic, metric-free
version thereof, which is appropriate for the wild simplicial complex that is data
space, that can be thought of as the simplicial, combinatorial analogue of the
Hodge construction.

It is worth pointing out that, even though it apparently deals with metric-
dependent features, in fact Morse filtration is purely topological, namely it is
independent on both the Morse function and the pseudo-metric adopted. Also,
Morse theory generates a set of inequalities for alternating sums of Betti numbers
in terms of corresponding alternating sums of the numbers of critical points of
the Morse function for each given index. The analogy with the Hodge scheme
is far reaching: simplicial Morse theory generates notions of intrinsic, discrete
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gradient vector field and gradient flow, associated to any given Morse function fM .
The latter played a particularly significant role – which has been interpreted in the
framework of discrete differential calculus – in applications to classical field theory
over arbitrary discrete sets [19], which is well described in a non-commutative
geometry setting [20].

A Morse complex, built out of the critical points of (any) Morse function
with support on the vertex set of S , has the same homology as the underlying
structure. This assumes particular importance because the Morse stratification
induced [21] is essentially the same as the Harder-Narasimhan [22] stratification
of algebraic geometry: one can construct the PL analogue of local co-ordinates
at the Morse critical points and provide a viable representation of the normal
bundle to the critical sets. It helps recalling that the relation between Morse and
homology theory is generated by the property that the number of critical points of
index i of a given function fM is equal to the number of i cells in the simplicial
complex obtained climbing fM , that manifestly bears on bi. Morse homology
is isomorphic to the singular homology; Morse and Betti numbers encode the
same information, yet Morse numbers allow us to think of the underlying true
manifold.

Inspired by what happens in the simpler context of gravity, we select the
Gromov-Hausdorff (GH) topology [23, 24] to construct a self-consistent measure
over S . Gromov’s spaces of bounded geometries in fact provide the natural
framework to address the measure-theoretical questions posed by simplicial
geometry in higher-dimensions. Specifically, it allows us to establish tight
entropy estimates that characterize the distribution of combinatorially inequivalent
simplicial configurations. In gravity theory the latter problem was solved [25];
however we should keep in mind that one deals with an underlying metric vector
space that gives rise, under triangulation, to a simplicial complex, which is a
Lorentz manifold.

The GH topology leads naturally to the construction of a statistical field theory
of data, as its statistical features are fully determined by the homotopy types of the
space of data [26]. Complexity and randomness of spaces of bounded geometry
can be quite large in the case of Big Data, since the number of coverings of a
simplicial complex of bounded geometry grows exponentially with the volume. A
sort of thermodynamic limit then needs to be realized over the more and more
random growing filtrations of simplicial complexes. To explain this within the
present context, a well defined statistical field theory is required to deal with the
extension of the statistical notion of Gibbs field to the case where the substrate
is not simply a graph but a simplicial complex, which amounts to proving the
property that the substrate underlying the Gibbs field may itself be in some way
random. This can be done by resorting to Gibbs families [27], so that the ensuing
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ensemble of geometric systems – a sort of phase space endowed with a natural
measure – behaves as a statistical mechanics object. There ensues the possibility
of finding a critical behavior as diversified phase structures emerge – entailing a
sort of phase transition when the system passes from one homotopy type to another.
The final message is: the deep connection between the simplicial complex structure
of data space and the information that such space hides, which is encoded at its
deepest levels, resides in the property that data can be partitioned in a variety of
equivalence classes and classified by their homotopy type, all elements of each of
which encode similar information. In our metaphor, in X information behaves as a
sort of order parameter.

1.6 The Topological Field Theory of Data

A single mathematical object encompasses most of the information about the
global topological structure of the data space: the Hilbert-Poincaré series P(z)
(in fact a polynomial in some indeterminate z), generating function for the Betti
numbers of the related simplicial complex. P(z) =∑ i≥0 bi zi can be generated
through a field theory, as it turns out to be nothing but one of the functors of the
theory itself for an appropriate choice of the field action.

The best known analogy to refer to for this formal setup – naturally keeping
in mind not only the analogies but mostly the deep structural differences:
continuous vs. discrete, tame vs. wild, finite vs. infinite gauge group – is
Yang-Mills field theory (YMFT) [28]. In YMFT the variables are a connection
field over a manifold M (in this case, a Riemann surface), and the gauge
group G is SU(N) (a Lie group of n × n unitary matrices), under which the
Chern-Simons (CS) action (i.e., the (2k − 1)-form defined in such a way that
its exterior derivative equals the trace of the k-th power of the curvature) is
invariant.

Paraphrasing Terry Tao [29], one may think of a gauge as simply a global
coordinate system that varies depending on one’s location over the reference
(ambient) space. A gauge transformation is nothing but a change of coordinates
consistently performed at each such location, and a gauge theory is the model for a
system whose dynamics is left unchanged if a gauge transformation is performed
on it. A global coordinate system is an isomorphism between some geometric
or combinatorial objects in a given class and a standard reference object in that
same class. Within a gauge-invariant perspective – as all geometric quantities
must be converted to the values they assume in that specific representation –
it ensues that every geometric statement has to be invariant under coordinate
changes. When this can be done, the theory can be cast into a coordinate-free
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form. Given the coordinate system and an isomorphism of the standard object,
a new coordinate system is simply obtained by composing the global coordinate
system and the standard object isomorphism, namely operating with the group of
all transformations that leave the gauge invariant. Every coordinate system arises
in this manner. The space of coordinate systems can then be fully identified with
the isomorphism group G of the standard object. This group is the gauge group
for the class of objects considered. This very general and simple definition of
gauge group allows us to introduce in our scheme a general notion of coordinates.
These can be straightforwardly identified by the existing intrinsic way to identify
mutual relations between objects introduced by the data space topology and by
the proximity criterion adopted. It is worth noticing how different such a notion is
from the customary notion of coordinates in a vector space.

Let us continue the YMFT analogy. The base-space for YMFT is a smooth
manifold, M, over which the connection field is well defined and allows for
a consistent definition of the action, since the curvature, which is simply the
exterior derivative of the connection plus the wedge product of the connection
by itself, is well defined everywhere. Field equations in this case are nothing but
a variational machinery that takes a symmetry constraint as input, expressed as
invariance with respect to G, and gives as output a field satisfying that constraint.
In YMFT, connections allow us to do calculus with the appropriate type of
field attaching to each point p of M a vector space – a fiber over that point:
the field at p is simply an element of such a fiber. The resulting collection of
objects (manifold M plus a fiber at every point p ∈ M) is a vector bundle. In the
presence of a gauge symmetry, every fiber must be a representation (not necessarily
different) of the gauge group, G. The field structure is that of a G-bundle. Atiyah
and Bott [30], via an infinite-dimensional Morse theory with the CS action
functional as Morse function, in addition to Harder and Narasimhan [22], via a
purely combinatorial approach, have both established a formula that expresses
the Hilbert-Poincaré series as a functor of the YMFT, in terms of the partition
functions corresponding to all Levi subgroups of G, a form that is reminiscent of
the relation between grand-canonical and canonical partition functions in statistical
mechanics.

For the space of data the picture is obviously more complex, because of the more
complex underlying structure. Vector bundles of the differential category have a
PL category analogue, referred to as block bundles [31]. These allow us to reduce
geometric and transformation problems characteristic of manifolds to homotopy
theory for the groups and the complexes involved. This leads in a natural way
to the reconstruction of the G-bundle moduli space in a discretized setting. For
simplicial complexes that, as already noticed, may not be manifolds, Novikov’s
lesson is that this can be done just in homotopy terms [14]. Since the homotopy
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class of a map fully determines its homology class, the simplicial block-bundle
construction furnishes all necessary tools to compute the Poincaré series. Also, in
spite of its topological complexity, data space offers a natural, simple choice for
the action. Indeed an obvious candidate to start with the exponentiated action is
the Heat Kernel K, because the Heat Kernel’s trace is precisely proportional to the
Poincaré series [32]. K can be obtained by constructing an intrinsic (metric-free)
combinatorial Laplacian over the simplicial complex [33]. This is done by the
ad hoc construction of the Hodge decomposition over S and the related Dirac
operator.

An oriented simplicial complex is one in which all simplices in the complex,
except for the vertices and empty simplex, are oriented. For any finite simplicial
complex K and any nonnegative integer d, the collection of d-chains of K, Cd, is
a vector space over R (nevertheless, the chains still form a group; we refer to the
set of chains of a given dimension as the chain group of that dimension). A basis
for Cd is given by the elementary chains associated with the d-simplices of K, so
Cd has finite dimension Dd(K). If the elements of Cd are looked at as coordinates
relative to this basis of elementary chains, we have the standard inner product on
these coordinate vectors, and this basis of elementary chains is orthonormal. The
d-th boundary operator is a linear transformation ∂d : Cd → Cd−1.

Each boundary operator ∂d : Cd→ Cd−1 of K relative to the standard bases for Cd

and Cd−1 with some given orderings has a matrix representation Bd. The number of
rows in Bd is the number of (d− 1)-simplices in K, and the number of columns is
the number of d-simplices. Associated with the boundary operator ∂d is its adjoint
∂ ∗, ∂ ∗ : Cd−1 → Cd.

It is known that the transpose of the matrix for the d-th boundary operator
relative to the standard orthonormal basis of elementary chains with the given
ordering, Bt

d, is the matrix representation of the d-th adjoint boundary operator, ∂ ∗,
with respect to this same ordered basis. It is worth recalling that the d-th adjoint
boundary operator of a finite oriented simplicial complex K is in fact the same as
the d-th coboundary operator δd : Cd−1(K,R)→ Cd(K,R) under the isomorphism
Cd(K,R)=Hom(Cd(K,R)
 Cd(K).

For K a finite oriented simplicial complex, and d ≥ 0 an integer, the d-th
combinatorial Laplacian is the linear operator �d : Cd → Cd given by

�d = ∂d+1 ◦ ∂ ∗d+1+ ∂ ∗d ◦ ∂d. (1.7)

As for the group G, notice that the space of data has a deep, far-reaching
property: it is fully characterized only by its topological properties, neither metric
nor geometric, thus – as the objects of the theory have no internal degrees of
freedom, they are constrained by the manipulation processes they can be submitted
to – there is only one natural symmetry it needs to satisfy, which is the invariance
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under all those transformations of data space into itself that do not change its
topology and are consistent with the constraints.

This requires a more thorough discussion of homomorphisms of topological
spaces. Let X be a topological space like the space of data, i.e., a space endowed
with some notion of nearness between its points. The set H = {h} of all
homeomorphisms h : X �→ X representable as continuous, invertible functions
can be thought of itself as a space. H = {h} is also a group under functional
composition. One can define a topology also on H, space of homeomorphisms
h(X). The open sets of H are made up of sets of functions that map compact
subsets K ⊂ X into open subsets U ⊂ h(X) as K ranges throughout X, and U
ranges through the images of X under all allowed homeomorphisms h (completed
with their finite intersections – which must be open by definition of topology – and
arbitrary unions, that once more must be open). This gives a notion of continuity
on the space of functions, so that one can consider continuous deformation of
the homeomorphisms themselves: the homotopies. The Mapping Class Group
GMC is defined by taking homotopy classes of homeomorphisms, and inducing
the group structure from the functional composition group structure – which is
already present on the space of homeomorphisms. This general definition allows
us to export the notion of mapping class group to the PL case when X is a simplicial
complex.

The notion of mapping class group is typically used in the context of manifolds.
Indeed, for a given manifold M, GMC(M) can be interpreted as the group of
isotopy classes of automorphisms of M. Thus, if M is a topological manifold, its
mapping class group is the group of isotopy-classes of homeomorphisms of M.
In the metric case, if M is smooth GMC(M) is the group of isotopy-classes of the
diffeomorphisms of M. Whenever the group of automorphisms of an object X has
a natural topology, M, GMC(X) is defined as Aut(X)/Aut0(X) where Aut0(X) is
the path component of the identity in Aut(X) (in the compact-open topology, path
components and isotopy classes coincide); so that there is a short-exact sequence
of groups:

1→Aut0(X)→Aut(X)→GMC(X)→ 1. (1.8)

All this implies that the gauge group should be chosen as the semidirect product
G ∧GMC of the group G ∼ PQ of the path algebra associated with the process
algebra characteristic of the data set in the representation defined by quiver Q,
and the (simplicial analog) GMC of the mapping class group [34] for the space of
data.

Recall that process algebra refers to the behavior of a system [35]. A system is
indeed anything able to exhibit a behavior, which is the entire collection of events
or actions that it can perform, together with the order in which they are executed
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and other relevant aspects of this execution, such as timing or probabilities, that
define the process. The term algebra refers to the fact that the language used to
represent the behavior is algebraic and axiomatic. For this reason operations on
processes can be defined in terms of quivers, and their effects can be formally
represented in terms of the universal algebra associated with the path algebra.

In analogy with the definition of a group, a process algebra is any mathematical
structure satisfying the axioms given for its operators. A process is then an
element of the universe of the process algebra. The axioms allow calculations
with processes. Even if process algebras have their roots in universal algebra, it
often goes beyond the bounds of universal algebra: for example, the restriction to
a single universe of elements can be relaxed and different types of elements can
be used, sometimes, also binding operators. The structure is capable of supporting
mathematical reasoning about behavioral equivalences, meaning that whatever the
specific approach followed for their definition, these are congruences with respect
to behavioral operators.

On the other hand, a process can be modeled as an automaton: an abstract
machine with a discrete number of states (among which the initial state, not
necessarily unique, and the final state) and of transitions, i.e., all possible ways
of going from a state to its neighbor states through the execution of elementary
actions, the basic units of a behavior. Then, a generic behavior is an execution
path of a number of elementary actions that leads from some initial state to its
final state, and an automaton is characterized by the complete set of execution
paths. Considering these actions as elements of an alphabet, an automaton is
the finite representation of a formal language. The important issue of deciding
when two automata can be considered equal is in this view expressed by a notion
of semantic equivalence, specifically of language equivalence: two automata are
equal when they have the same set of execution paths, or – differently stated –
they accept/recognize the same language. In this context, an algebra that allows
reasoning about automata is the algebra of regular expressions [36].

Since in automata theory the notion of interaction is missing, in order to model
a system that interacts with other similar systems, concurrency theory is typically
used: the theory of interacting, parallel, distributed or reactive systems that
provides a process algebra with parallel composition among its basic operators.
In this case, the abstract, universal model is the transition systems in which the
notion of equivalence is not necessarily restricted to language equivalence, but
rather to bisimilarity. Two transition systems are bisimilar if, and only if, they can
mimic each other’s behavior in any state they may reach.

Finally, we must take into account that any algebra with a finite number of
generators and a finite number of relations can be written as a quiver with relations
(though not necessarily in a unique way) by thinking of the set of execution paths
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of the automaton’s actions as the basis of a k-path algebra with composition law
induced by the structure of the combinatorial data of a suitable k-Quiver (kQ).
For a given quiver kQ, a relation is simply a k-linear combination of paths in kQ.
Given a finite number of relations, one can form their two sided ideal R in the path
algebra, and thus define the algebra A∼ kQ/R as a quiver with relations. Process
algebras can always be assumed to be representable by a quiver with relations. G is
the group associated with A.

A few technicalities are needed here to better define the notion of process
algebra adopted here. Any finite-dimensional algebra which is basic (i.e., all of
its irreducible modules are one-dimensional) is isomorphic to a quotient of the
path algebra PQ of its quiver Q modulo an admissible ideal I.

An analogous, but more subtle, result holds at the basic coalgebra level, through
the notion of path coalgebra C of a quiver with relations (Q,R), where R is the
set of relations induced by I.

Fix a field, say K. A K-coalgebra – that we shall simply denote as C – is a triple
(CK,�,ε) consisting of a K-vector space CK and two K-linear maps: the coproduct
� : CK→ CK⊗CK and the co-unit ε : CK→K, such that the two equalities hold:

(�⊗ I)�=� (I⊗�), (ε⊗ I)�= (I⊗ ε)�= I, (1.9)

I denoting the identity map in C.
A sub-coalgebra A of C, if it exists, is a K-vector subspace AK of CK such that

�(A)⊆A⊗A. Henceforth we shall drop index K whenever it is not necessary.
In this setting quiver Q is a actually a quadruple (Q0,Q1,s,e), where: Q0 is a set

of vertices and Q1 a set of arrows (oriented edges) in some given ambient space,
and for each a ∈ Q1 the vertices s(a) and e(a) in Q0 are respectively the source
(start point) and the sink (end point) of a. When e(a)≡ s(a), arrow a is said to be a
loop.

For κ and 
 vertices (κ ,
 ∈Q0) an oriented path pL of length L in Q from κ to 

is the formal ordered composition of arrows

pL = aL ◦ aL−1 ◦ · · · ◦ a2 ◦ a1, (1.10)

where s(a1)≡ κ , e(aL)≡ 
, and, for j= 2, . . . ,L, e(aj−1)≡ s(aj). Also, to any vertex
κ ∈Q0 one formally attaches a trivial path of length 0, p0, starting and ending at κ ,
such that for any arrow a∈Q1 such that s(a)= κ , or b∈Q1 such that e(b)= κ , one
has – respectively – a◦p0 = a, p0 ◦b= b. The set of trivial paths can be identified
with the set of vertices Q0. A path c that starts and ends at the same vertex is a
cycle. Loops are cycles.

Let HKQ be the K-vector space generated by the set of all paths in Q. Endow
HKQ with the structure of a K algebra (note, not necessarily unitary) by defining
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the algebra composition law (we may call it multiplication) as that induced by
simple concatenation of paths: for pL = aL ◦ · · · ◦ a1, qM = bM ◦ · · · ◦ b1,

pL • qM
.=
{

aL ◦ · · · ◦ a1 ◦ bM ◦ · · · ◦ b1, if e(bM)≡ s(a1),
∅, otherwise.

(1.11)

The algebra PKQ thus generated is the path algebra of the quiver Q.
PKQ has a natural grading:

PQ ≡PKQ =PQ0 ⊕PQ1 ⊕·· ·⊕PQm ⊕·· · , (1.12)

where Qm denotes the set of all paths of length m, Qm = {pm |m ∈N}, that form a
complete set of primitive, orthogonal idempotents of PQ.
PQ is unitary if Q0 is finite; PQ is finite-dimensional if and only if Q is finite

and has no cycles.
An ideal I⊆PQ is called ideal of relations if I⊆PQ2 ⊕PQ3 ⊕·· · .=PQ≥2 .
For Q finite, ideal I of PQ is admissible if and only if there exists an integer

n≥ 2 such that, denoting by PQ≥n the ideal PQ≥n

.=PQn ⊕PQn+1 ⊕·· · , one has
PQ≥n ⊆ I⊆PQ≥2 .

Finally, a quiver with relations QR is a pair (Q,R), namely a quiver Q endowed
with the ideal generated by the relations R induced by I. If I is admissible then
QR is a bound quiver.

If for pL= aL ◦aL−1 ◦ · · ·◦a2 ◦a1 a path of length L in Q from vertex κ to vertex

 one defines:

�(pL)
.= p

(
)
0 ⊗ pL+ pL⊗ p

(κ)
0 +

L−1∑
j=1

aL ◦ · · · ◦ aj+1⊗ aj ◦ · · · ◦ a1

.=
∑
r , s

r • s= pL

r⊗ s, (1.13)

whereas, for any trivial path p0, �(p0)= p0⊗ p0; and

ε(p)
.=
{

1, if p ∈Q0,
0, if p isapathof length ≥ 1,

(1.14)

then (PKQ,�,ε) is the path coalgebra of quiver Q (or QR if Q is endowed with
relations R). This completes the toolkit necessary for the construction of the factor
G ∼PQ of the gauge group.

As for GMC, a few extra comments are needed to clarify how one has to proceed
to coherently and practically construct its simplicial complex representation. A
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key aspect here is the set of actions of the mapping class groups on spaces
of different sorts, encoding characteristic geometric and topological features.
Among these homotopy classes, foliations, conformal structures have all been
extensively studied [37]. All these actions are induced by corresponding actions
of the homeomorphisms of the base space on the objects selected. Moreover, the
spaces on which the mapping class groups act can be equipped with different
structures, e.g., groups, simplicial complexes, or manifolds, and the mapping
class groups are embedded accordingly into groups of algebraic isomorphisms,
simplicial automorphisms, isometries of the related metrics – if any. For most
of these actions, the natural homomorphism from the mapping class group
to the automorphism group of the given structure is an isomorphism. Among
these, particularly interesting in the present context are the actions by simplicial
automorphisms on the abstract simplicial complexes associated to X; namely,
actions by piecewise linear automorphisms of the associated measured foliations
space, equipped, for example, with the train-track piecewise linear structure
introduced by Thurston [38] or with the set of self-preserving intersection
functions.

The latter structure is related with the braid group, whose central extension – not
unexpectedly – is the group of permutations. GMC is finite and finitely presented;
its presentation, as well as its representations, can be completely constructed once
one knows the full homotopy of the simplicial complex. Recently, a complete
representation of GMC realized in terms of the group SU(1,1) of hyperbolic
rotations has been obtained by the authors (and is reported in [39]).

We claim that, in spite of the formal difficulties, mimicking the block bundle
approach for the appropriate simplicial complex structure and given G, the data
space topological invariants (among which Betti numbers) can be computed in
the context of the proposed field theory through the (recursively computable)
subsets of symmetries of G ∧ GMC. The benefit is twofold. On the one hand
the cosets of G ∧GMC order data in equivalence classes with respect to isotopy,
leading to a canonical system in the related process algebras. On the other
hand, one can make a unique choice among the several possible theories – the
multiplicity being related with the plurality of topological structures due to the
passage through Morse numbers (Morse and Betti numbers are related through
inequalities, not equalities) – in the following way. One begins by constructing,
for all manifolds in the family generated by the collection of Morse numbers, the
free field theories whose exponentiated action is simply the Heat Kernel, for which
the partition function is the generating function of the manifold Betti numbers.
By self-consistency, i.e., simply comparing the coefficients of P(z) with the Betti
numbers outcome of the phenomenological persistent homology one identifies
which is the effective data manifold.
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30 M. Rasetti and E. Merelli

In this way, not only do we fully recover through the construction proposed the
whole data space topology (for example, the set of Betti numbers), but we are
able to continue to construct an autonomous, self-consistent topological data field
theory (TDFT) on the space of data: once more the fascination of unexpected links
in mathematics [40].

As a final remark, notice that the resulting picture comprises a surprising amount
of information on the associated moduli spaces as well; markedly, the quiver
representation for the path algebra A (see also [41, 42]), basic tools for the
description of processes involving maps and transformations of data sets.

1.7 The Formal Language Theory Facet

The construction outlined so far naturally brings to light a new facet: formal
language theory, which conveys a dimension as much unexpected as elegant in
its form.

A preliminary question to raise at this point is whether the adopted topological
landscape is inherently coherent with the structure of Formal Language Theory
(FLT). As we know, a central issue in the theory of computation is to determine
classes of languages whose representation has finite specification [36]. A formal
language defined over a finite alphabet A of symbols is a subset of the set A∗ of all
strings of any length that can be represented by that alphabet. As a consequence,
the number of possible representations is countably infinite and the set of all
possible languages over a given alphabet A is uncountably infinite. Under these
conditions we are obviously unable to represent all languages. Coupled with
this issue there is the limit posed by well-known Gold’s theorem for which the
minimum automaton identification from given data is NP-Complete [43]. In the
TDFT context, the challenge is to construct a finite representation of the language
defined over the alphabet whose symbols are the generators of gauge group G, and
whose cosets partition the data space X in equivalence classes of finitely presented
objects. Such languages can be finite or infinite; what is interesting here is that
their presentation can always be finitely given in G ∧GMC. In other words, such
languages are each a collection of discrete spaces containing a finite number of
homeomorphic objects; by the TDFT we construct a language of data, the language
proper to topological shape S .

Interpreting the gauge group G as topological shape language requires a resort to
a notion of duality somehow similar to that entering the construction of Langland’s
dual group, yet designed to represent the relationship between structure and
function of a behavior: a mirror symmetry that allows each to affect the other
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in the same way. As a consequence, we can characterize the data language as
the process algebra whose processes are well-behaved with respect to modulo
bisimulation [44], by attributing them the same, unique (bi-)algebra induced by
the gauge group G ∧GMC, with G, as mentioned, the group of A.

The role of GMC in the discrete case can be naturally traced back to Automatic
Groups [45], i.e., finitely generated groups equipped with several finite-state
automata that are able to distinguish whether or not a given word – a representation
of a group element – is in canonical form, and hence if two elements in canonical
form differ, and if they do, by which generators. It may be worth recalling
that automatic groups were originally introduced in connection with topology,
in particular with the study of the fundamental group, and of the homotopy
(3-manifolds), because the class of automatic groups can be extended to include
the fundamental group of every compact 3-manifold, thus satisfying Thurston’s
geometrization [38]. In the topological structure we are dealing with here – where
we consider collections of relational simplexes, built by combinatorially gluing
together relational simplices – the task is much more complex. However, as the
basic structure is fully controlled by homotopy types, turning the generation of a
family of parametrized simplicial complexes into a classification problem in FLT
is natural and straightforward in its statement, if not in its solution. One should be
aware, however, that issues of uncontrollable algorithmic complexity or even of
undecidability may possibly arise.

Moreover, the syntax of a language in FLT is traditionally described by using
the notion of grammar, defined by the relations that are necessary to build correct
syntax constructs from atomic entities (symbols). This is what allows us to describe
the syntax of a formal language universally, in spite of the representation of its
texts. In addition, the syntax constructs are typically described as resorting to
the notion of syntax diagram, D, that is the connected multigraph with nodes
labeled in terms of the formal language’s alphabet A and connections – in our
representation not only edges or links, but also higher-dimensional simplices –
that represent the syntax relations. The multigraph of a syntax diagram may be
directed or not, and in view of its combinatorial structure, inherited from the
simplicial structure of data space and accounted for in the FTL vision, it is itself
to all effects a simplicial complex. It is possible to select specific syntax diagrams
(referred to as correct, as defined below) out of the set of all syntax diagrams
on A to construct different grammars. The formalism used to do this requires
a fundamental notion: that of neighbor grammars [46], whose meaning is the
following. Define for each D, the collection of subdiagrams labeled by the set
of pairs (D′,s) where D′ ⊆D is another syntax diagram and s is the inclusion map
of D′ into D. The neighborhood of a symbol of A is a syntax diagram that contains
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the node singled out by this symbol. The neighbor grammar of the given grammar
consists of the finite family of neighborhoods defined for each symbol of A. A
given syntax diagram is said to be correct if for each of its nodes, labeled by some
symbol of A, it includes some a neighborhood of this symbol. Such a neighborhood
should contain all simplices adjoining to its center. There is therefore at least one
cover consisting of neighborhoods for each correct syntax diagram in the given
neighbor grammar. Such cover is the syntax. Furthermore, the category D of syntax
diagrams over the given alphabet can be introduced, based on the neighboring
grammar. It is known [46] that the category of correct syntax diagrams,
defined as D but limited to correct syntax diagrams, admits a Grothendieck
topology [47].

It is the formal language generated by the field theory through its gauge group
that makes the TDFT consistent with a formal language architecture. This comes
exactly from the property of having a Grothendieck topology at our disposal.
Indeed, the Grothendieck topology is a structure on a category C which makes the
objects of C behave like the open sets of a topological space X . Its characteristic
is that it replaces the notion of a collection of open subsets of U ⊆ X which is
stable under inclusion by the notion of a sieve. If c is an object in C, a sieve
S on c is a subfunctor of the functor Hom(−,c) – i.e., for all objects c ∈ C,
S(c)⊆Hom(c,c), and for all arrows f : c→ c, S(f ) is the restriction of Hom(f ,c),
pullback by f to Hom(c,c)(c): the Yoneda embedding applied to c. In the case
of O(X ) [the category whose objects are the open subsets U ⊆ X and whose
morphisms are the inclusion maps V → U of open sets U and V of X ], a sieve
S on an open set U just selects the collection of open subsets of U which is stable
under inclusion. If W ⊂ V , then there is a morphism S(V) → S(W) given by
composition with the inclusion W→ V . If S(V) is non-empty, there follows that
S(W) is also non-empty. The pullback of S along f , that we denote by f ∗S, is
– for S a sieve on X and f : Y → X a morphism, left composition by f – the
sieve on Y defined as the fibered product S×Hom(−,X ) Hom(−,Y) together with
its natural embedding in Hom(−,Y). More concretely, for each object Z of C,
f ∗S(Z) = {g : Z → Y | f g ∈S(Z)}, and f ∗S inherits its action on morphisms
by being a subfunctor of Hom(−,Y). Finally, a Grothendieck topology GC on
a category C is a collection, for each object c ∈ C, of distinguished sieves on
c, say GC(c), called covering sieves of c. The selection process, whereby such
collection is generated, will be subjected to a number of axioms. A sieve S on
an open set U ∈ O(X ) will be a covering sieve if, and only if, the union of all
the open sets V for which S(V) is non-empty and equals U ; in other words, if
and only if S gives us a collection of open sets which cover U in the customary
sense.
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1.8 Language, Structure and Behavior, Automata

The TDFT construct has crucial consequences in terms of theoretical computer
science. In particular, the three basic identifications it implies have a far reaching
interpretation: i) the architectural structure of the dataset seen as a G-fiber bundle,
consisting of a base space, the space of data X, dealt with as a topological space,
a fiber attached to each point of X, the set of fibers, each as a representation
of the gauge group G = G ∧ GMC; ii) the field as an element of the fiber at
each point of the data space; iii) an action – in the simplest non-interacting
case is the combinatorial Laplacian – able to describe the processes over data as
transformations of the global topological landscape.

This architecture is indeed what allows us to touch the final goal: the definition
of a universal methodology whereby, starting from the exploration of (large)
data sets, we may construct a language capable of describing processes over
data as a unified operational system of structure and behavior. This new object
can be interpreted as true (effective, extended) data space, which includes,
besides the topological features inherent in the data set, the set of all possible
transformations allowed on data, which are generated by the group of all its
possible topology-preserving transformations as well as by the related process
algebra and reflected in the resulting equivalence classes. In such perspective,
the system becomes itself a self-organizing program, whose identifiers are the
interactions that characterize the field action. Such interactions correlate parts
of potential processes (embedded programs) of real life applications: a feature
typically caught in the S[B] paradigm [48].

The principle of self-organization has long entered as a fundamental feature
in the theory of nonlinear, possibly discrete, dynamical systems. It provides the
clue to obtain diverse representations of the relation between lower-level elements
and higher-order structures in (multi-level) complex systems. Its basic idea is that
the interactions among low-level elements, in which each element adjusts to the
others, is local because it does not make reference to patterns that are global. It is
however this latter feature that leads to the emergence of highly coherent structures
and complex behavior over the system as a whole. Such structures, in turn, are able
to provide correlations for the lower-level elements with no need of higher-order
agents to induce their emergence [50, 51]. In other words, rather than being
imposed from above or from outside, the higher-order structures emerge from the
interactions internal to the system or between the system and its environment.

From an algebraic perspective, it is the language signature that becomes a
measure of the interactions which generate the environment associated with the
data set. This is exactly what happens in the S[B] model when one establishes
which states connected to B (i.e., which behavior) satisfy the constraints imposed
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by the set of states S (i.e., the states defining the system’s structure). In TFTD
this is equivalent to the process of determining which is the global fiber bundle
to which a given element in a fiber attached to a specific point of the topological
space belongs.

In this perspective, the structure of S[B] can be naturally identified as a fiber
bundle: S[B] = (B,S,π ,B .= {Bj | j ∈ J }), with total space B, base space S ∼ X
(the different notation S is to remind us the we are dealing with a simplicial
complex), projection map π : B→ S and fiber set, B. J is a label set tagging points
xj ∈ S, j ∈ J . In B each single fiber Bj specifies the global topological constraints
conditioning all the correlations of the xj. It should be recalled here that S is a
higher-dimensional standard object that provides the frame for the data space X.
This defines the internal homeomorphisms within the equivalence classes on the
fiber, for any subset of constraints corresponding to a given choice of the global
invariants.

Fiber Bj is the topological space of computations induced by those constraints in
S compatible with the fiber structure, whose subset Sj=π−1(Bj) is itself a subspace
of S. It is the commutativity of diagram Dj:

π−1(U) Sj × Bj

U

φ

pπ

that allows us to identify the homeomorphism p as the projection map that
establishes the one-to-one relationship restricting Sj to the subfiber U of S[B] that
we can finally denote as Sj[Bj]. The latter has the same topological invariants as
Sj ↔ xj, so that p actually entangles computation and its context (i.e., the objects
living in Sj×Bj, ∀j ∈ J ).

Our TDFT can in this way be viewed as generated by symmetric monoidal
functors from the monoidal pseudo n-fold category to a monoidal n-fold category
of spans of sets. The possible resulting degeneracy (more than a single automaton
associated with the same language; i.e., strongly connected oriented graphs)
reflects the non-uniqueness at the simplicial complex level of the correspondence
Betti numbers to Morse numbers at the field theoretical level. In the present scheme
it is resolved by self-consistency.

Before proceeding, let us recall a few definitions. First, a Tensor Category (TC)
is a sextuple (C;⊗;a...;1;
.;r.), where C is a category; operation ⊗ : C× C −→ C
is a (bi)functor; aXYZ : (X ⊗ Y)⊗ Z 
 X ⊗ (Y ⊗ Z) is a (functorial) associativity
constraint; 1 is the unit object; while 
X : 1⊗ X 
 X and rX : X⊗ 1 
 X, subject
to a number of axioms. Considering only C-linear abelian tensor categories (with
bilinear tensor product), the TC must satisfty two sets of basic (defining) axioms:
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the pentagon axiom:

(X ⊗ Y ) ⊗ (Z ⊗ W)

((X ⊗ Y) ⊗ Z) ⊗ W

(X ⊗ (Y ⊗ Z)) ⊗ W

X ⊗ ((Y ⊗ Z) ⊗ W)

X ⊗ (Y ⊗ (Z ⊗ W))

aX⊗Y,Z,W

aX,Y,Z ⊗ 1W

aX,Y ⊗ Z,W

1X ⊗ aY,Z,W

aX,Y,Z⊗W

and the triangle axiom:

(X ⊗ 1) ⊗ Y X ⊗ (1 ⊗ Y )

X ⊗ Y

aX,1,Y

1X ⊗ �YrX ⊗ 1Y

Two categories C1, C2 are said to be tensor equivalent if there exists a functor F :
C1 −→ C2, together with an isomorphism F(1)
 1 and a functorial isomorphism
ιX,Y : F(X⊗Y)−→F(X)⊗F(Y), such that

F((X ⊗ Y ) ⊗ Z)

F(X ⊗ Y) ⊗ F(Z)

(F(X) ⊗ (F(Y)) ⊗ F(Z)

F(X ⊗ (Y ⊗ Z))

F(X) ⊗ (F(Y) ⊗ F(Z))

F(X) ⊗ F(Y ⊗ Z)

F(aXY Z)

aF(X)F(Y)F(Z)

ιX⊗Y,Z

ιX,Y ⊗ 1F(Z)

ιX,Y ⊗ Z

1F(X) ⊗ ιY,Z
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If moreover a functional isomorphism cXY : X⊗ Y 
 Y ⊗X exists, satisfying –
both for cXY and c(rev)

XY ≡ c−1
YX – the hexagon axiom:

(X ⊗ Y) ⊗ Z

(Y ⊗ X) ⊗ Z

Y ⊗ (X ⊗ Z)

aXY Z

1Y ⊗ cXZ

cX,Y ⊗ 1Z

aY XZ

X ⊗ (Y ⊗ Z)

Y ⊗ (Z ⊗ X)

(Y ⊗ Z) ⊗ X

cX,Y ⊗ Z

aY ZX

then C is a called a braided tensor category, and the pure braid group PBn acts
on X1⊗Xn, whereas the braid group Bn acts on X⊗n. A braided tensor category is
symmetric if cXY ◦ cYX = id (i.e., c(rev) ≡ c), ∀X,Y .

For C a TC, a module category over C is a quadruple (K,⊗,a...,
.), K being
a C-linear category and the (exact) bifunctor ⊗ denoting now the operation ⊗ :
C×K−→K, satisfying the pentagon and triangle axioms.

An important example of this construction comes from conformal field theory
(CFT). In statistical field theory a conformal theory is fully determined by its
correlation functions, exactly like it happens in TDFT and in S[B]. In CFT,
correlation functions are bilinear combinations of conformal blocks (sets of
correlators that implement the identities and constraints that follow from the global
gauge symmetries of the theory), and a monodromy for conformal blocks arises
that is encoded into a modular tensor category T. Given conformal blocks with
monodromy described by T, specifying the correlation functions is equivalent
to selecting another category, the module category M over T. Also, in a CFT
conformal blocks are controlled by a vertex algebra V [52]. A deep theorem [53]
states that for M to be indecomposable over the representations of V one can
combine conformal blocks of V into a globally consistent system of correlation
functions.

In this complex construction a crucial notion emerges: that of the (asyn-
chronously) L-combable group [54]. The latter is a group to each element
of which we can associate a word in some free group within an arbitrary,
abstract family of languages L. The nature of L is rather flexible: it can be the
family of regular languages, context-free languages, or indexed languages. Words
representing group elements in some of these languages [55] describe (flow-like)
transformations over the data set. The class of combable regular languages
consists of precisely those groups that are asynchronously automatic. Recalling
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the Atiyah-Bott and Harder-Narashiman results for manifolds, it is relevant to try
and classify the (normal) sub-groups of G, and this can be done in the group and
language theoretical setting.

In the algebraic theory of languages, a regular language is fully represented
by its syntactic monoid (meaning that the properties of that language, e.g., the
expressive power of its first-order logic, are fully contained in the structure of the
monoid), which is typically finite. In this framework regular languages are referred
to as languages of data words. A rigorous, but simple construction, of data words
consists in identifying first the alphabet, say A, and focusing then the attention on
words and languages over A and on the algebraic theory they generate. The field
theoretical construction of the Betti number generating function for data sets is an
instance of representation of the complex language of data words associated with
the simplicial realization of GMC, which is known to be combable (though in some
cases possibly not automatic) [56].

Automata models can be developed for languages of data words, whose basic
feature is that they provide a trade-off among three crucial properties: strong
expressivity, good closure properties and decidable (or efficiently decidable)
emptiness. It strikes an acceptable balance in the trade-off. Logics have been
developed to establish the properties of data words: in particular a language of
data words is definable in first-order logic if its syntactic monoid is aperiodic; a
statement that links the feature of definability in first-order logic to a property that
in our framework is dynamical.

In the topological setting, the relevant emerging relationships naturally involve
invariants that are related not only to objects but maps between pairs of objects
as well. Once again we find here an explicit manifestation of functoriality. This is
the way in which the theories of automata and formal languages merge with the
field theoretical picture, because the field theory generates sequences of symbols
that enter into play in the simplicial construction of the G-bundle associated with
the gauge group G, as well as the relations among them. In turn, this bears on the
enumerative combinatorics content of the theory (because G is reduced essentially
to homotopy braids) that provides the language recognized by the automata. Also,
combinatorics on words pertains to the wide set of natural operations on languages,
in particular to the property – crucial for the final step of pattern discovery in data
space – that the orbit of any language in L under the monoid generated by such a
set is finite and bounded, independently of what L is.

The use of formal languages leads to the recognition of automatically generated
domain-specific languages. The latter are languages appropriate to single out
specific topological objects (concepts) and their mutual relations, hidden in the
noisy landscape of the large data space, and to manage, query and reason over those
concepts so as to infer new knowledge. This recalls Codd’s theory of database
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management with its basic tool, relational algebra – derived from the algebra of
sets and first-order logic when dealing with finite relations closed under specific
operations. Codd’s approach tackles the problem top-down, first defining the
conceptual model, then classifying data through relations, and finally manipulating
such relations through their schemas. The approach based on the topology of data
space, on the contrary, tackles the problem bottom-up. The two approaches can
thus be associated to two different, complementary ways of thinking: the former,
based on the assumption that the agent knows a priori, at least in part, the properties
of data (characteristic, e.g., of artificial intelligence approaches to data mining,
such as machine learning); the latter aimed at inferring new knowledge for the
agent, extracting from data (ontological emergence) those relations that define
hidden structural knowledge-generating patterns, but with no a priori information
on what data is about.

The dialectical question about the nature of patterns, grounded in the antithesis
between pattern recognition and pattern discovery, has guided us naturally – in the
field theoretical context – to search for a way to describe patterns at the same time
algebraic, computational, intrinsically probabilistic, yet causal. In TDFT, patterns
can be collected in ensembles resorting to equivalence classes of histories, or of
sets of states. The strength of such patterns (e.g., their predictive, i.e., information
retrieval, capability) and their statistical complexity (via state entropy, or the
amount of information retained) provide, for each particular process, a measure
of the forecasting ability of the theory over the entire data space.

1.9 Emergence of Patterns

We need now to finally merge all the above ingredients into a unique field-
theoretical picture, consistent not only with the representation of the space of
data equivariant with respect to the transformation properties induced by the
simplicial topological scheme itself and by the processes the system may undergo,
but also on the full set of characteristic patterns within the data set – via the field
correlation functions. The weights depend on the notion of proximity adopted, on
the formal language on which the theory is based, on the field action functional
selected and on the Morse stratification corresponding to it, as well as on the set of
transformations of the data space into itself that preserve its topology. The choice
of correlations to represent patterns is crucial: it enables us to make predictions
without violating the unavoidable restriction (a mixture of the second law of
thermodynamics with the principle of relativity) that predictions can only be based
on the process’s past, not on any outside source of information except the data
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in X. In a perspective of this sort, patterns belong to the intrinsic structure of the
process, not to the rest of the universe; aggregated pieces of information that share
a common structure, and say little about what that pattern is. This is just what
correlations are about.

Patterns as represented by field correlations are: robust, because they are derived
from persistent homology (mediated, if necessary, by the statistical mechanics
manipulation process, e.g., smoothing out the role of very high order topological
invariants) and hence free, to any desired accuracy, of irrelevant noisy components;
global, as they describe deep lying correlations dictated by the non-local features
of the space topology inherited by the field; optimal, based as they are on the
variational principle proper to the field theory; flexible, due to the vast diversity
inherent in their language theoretic structure. This is why they provide essential
strategic directions as how to search data space. Whilst several details of the theory
remain to be exhaustively worked out, its grand design does not. Of course several
of its subtle technicalities need to be completed. A number of applications have
started to confirm its potential reach and validity. Among these we mention in
particular two: the formulation of a novel many body approach to the construction
of an effective immune system model [48], and the analysis of the nature of
altered consciousness in the psychoactive drug controlled state based on functional
magnetic resonance imaging data [7, 57].

1.10 Conclusions

To conclude, we have outlined the construction of a topological gauge field
theory for data space when these data encode information. Such a theory is
capable of acting as a machine whose inputs are a space of data and the
symmetry group generated by its simplicial complex approximation as resulting
from persistent homology, while its output consists of sets of patterns in the
form of field correlations as generated by the field equations. These correlation
functions fully encode information about patterns in data space, where the relevant
information about the system which the data refer to is encoded. The field theory
is self-consistent. It is topological because the data space features it resorts
to are topological invariants, and because the gauge group embodies the most
general transformations of data space, which leave such global topological features
unchanged. Finally, the field evolution – due to the PL nature of the construct –
has a natural implementation in terms of finite state automata, which maps both
the emergence of patterns and the identification of correlations into well-defined
formal language theoretical questions.
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