- La defensa tendrá lugar en la Facultad de Ciencia y Tecnología de la Universidad del País Vasco, situada en el Campus de Leioa, a las 11:00 am
Julia M. Kroos se incorporó al Basque Center for Applied Mathematics en 2014 como estudiante de doctorado. Se licenció en Matemática Aplicada en la Universidad de Münster (Alemania) en 2011 y obtuvo un Máster en Matemática Aplicada en esa misma universidad en 2014.
Su tesis doctoral ha sido dirigida por el Dr. Luca Gerardo-Giorda, líder de la línea de investigación del centro en
Mathematical Modeling in Biosciences.
En nombre de todos los miembros de BCAM queremos desear mucha suerte a Julia en la defensa de su tesis.
[idea]
PhD Thesis title: Patient-specific modelling of cortical spreading depression applied to migraine studies
La migraña es un trastorno neurológico muy común. Un tercio de los pacientes que sufren migraña experimentan lo que se denomina aura, una serie de alteraciones sensoriales que preceden al típico dolor de cabeza unilateral. Diversos estudios apuntan a la existencia de una correlación entre el aura visual y la depresión cortical propagada (DCP), una onda de despolarización que tiene su origen en el córtex visual para propagarse, a continuación, por todo el córtex hacia las zonas periféricas. La complejidad y la elevada especificidad de las características del córtex cerebral sugieren que la geometría podría tener un impacto significativo en la propagación de la DCP. En esta tesis hemos combinado dos modelos existentes: un modelo neurológico pormenorizado para el componente electrofisiológico de la DCP y un modelo de reacción-difusión que tiene en consideración la difusión del potasio, el impulsor de la propagación de la DCP. Durante el proceso, hemos integrado dos aspectos de la DCP que tienen lugar en diferentes escalas de tiempo: la dinámica electrofisiológica seguiría un patrón temporal del orden de milisegundos, mientras que la dinámica del potasio extracelular que acciona las funciones de propagación de la DCP se mediría en una escala de minutos. Como resultado, obtendremos un modelo multiescalar EDP-EDO. Asimismo, hemos incorporado los datos específicos del paciente en el modelo DCP: (i) la geometría cerebral específica de un paciente obtenida a través de resonancia magnética, y (ii) los tensores de conductividad personalizados obtenidos a través de diffusion tensor images. A fin de estudiar el papel que desempeña la geometría en la propagación de la DCP, hemos definido las cantidades de interés (CdI) relacionadas con la geometría y las que dependen de la DCP y las hemos evaluado en dos casos prácticos. Si bien la geometría no parece tener un impacto significativo en la propagación de la DCP, algunas CdI han resultado ser unas candidatas muy prometedoras para facilitar la clasificación de individuos sanos y pacientes con migraña. Finalmente, para justificar la carencia de datos experimentales para la validación y selección de los parámetros del modelo, hemos aplicado diversas técnicas de cuantificación de la incertidumbre al modelo DCP y hemos analizado el impacto de las diversas elecciones de parámetros en el resultado del modelo.
[/idea]